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SUMMARY 

 

 

The morphogen transforming growth factor β (TGFβ) can initiate diverse cellular 

responses associated with development, cancer, and fibrosis.  TGFβ signaling results in 

down-regulation of numerous antioxidant species but itself has been shown to exhibit 

redox sensitivity.  In the context of TGFβ-mediated epithelial-mesenchymal transition 

(EMT), there exists a possibility of a positive feedback loop operating over multiple 

temporal and biological scales to stabilize a mesenchymal phenotype.  Additionally, 

drug-resistant side populations (SP) arise in populations that exhibit heterogeneity of 

activity of a glutathione transporter, ABCG2, which is regulated within the same cellular 

program as antioxidants.  Therefore, it is possible that SPs reflect heterogeneity in redox 

regulation within a population; however, how single-cell ABCG2 activity heterogeneity 

manifests population level characteristics is not known.  The overall objective of this 

research was to investigate the relationship of redox-regulated processes to the complex 

phenotypes that arise in the context of TGFβ-mediated EMT using multivariate modeling 

approaches. 

The dynamics of redox regulation were investigated in the context of EMT, based 

upon the hypothesis that decreased nucleophilic tone acquired during EMT strengthens 

TGFβ signaling, enhancing acquisition and stabilization of the mesenchymal phenotype.  

Customized in-cell western assays were developed to evaluate multivariate phenotype 

states as they developed during EMT.  TGFβ treatment decreased H2O2 degradation rates 

and increased glutathione (GSH) redox potential, indicating decreased nucleophilic tone.  
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Epithelial/mesenchymal differentiation markers and redox time course data were paired 

using principal component analysis (PCA) to construct a multivariate representation of 

phenotype over the time course of EMT.  Decreased nucleophilic tone during EMT 

coincided with acquisition of a mesenchymal phenotype over time scales too large to 

enable enhancement of EMT. 

Next, the role of heterogeneity in the activity levels of a GSH transporter, 

ABCG2, was investigated at the single cell level for the emergence of drug-resistant SPs 

at the population level.  The objective was to develop a multiscale ensemble model 

consisting of a heterogeneous population of individual cells to interrogate multiple 

kinetic schemas and determine the means by which TGFβ signaling modulates 

heterogeneity to affect SP size.  TGFβ was found to decrease the size of SPs as well as 

the magnitude of response.  A highly active subpopulation juxtaposed by an inactive 

main population was identified, suggesting the SP cells may exhibit a distinct redox 

profile from main cells, the frequency of which was decreased with TGFβ.  

In summary, this work represents systems approaches to investigate the dynamics 

of redox regulation during TGFβ-mediated EMT from the perspective of a multivariate 

phenotype, simultaneously accounting for changes in epithelial/mesenchymal 

differentiation and to the intracellular redox environment.  Additionally, an outcome of 

this project is a multiscale ensemble modeling methodology that is generalizable for 

future mechanistic studies of drug intracellular interactions that influence multivariate 

population characteristics as observed in flow cytometry. 
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1 

CHAPTER 1  INTRODUCTION  

 

 

1.1 Background 

1.1.1 Phenotype Transitions Drive Cancer Progression 

Cancers are the second leading cause of mortality in adults in the United States 

(Murphy et al., 2013) and globally (World Health Organization, 2012).  Growth of 

cancerous tumors arises from a series of transformations cellular phenotype that enable 

cancer cells to engage in continuous proliferation and escape both intrinsic and extrinsic 

inhibitory signals. (Hanahan and Weinberg, 2011)  Secondary tumors, or metastases, 

exhibiting resistance to therapy represent the most substantial disease burden in cancer 

patients and arise when cells from a primary tumor acquire the capability to escape the 

local environment and survive in secondary tissues. (Talmadge and Fidler, 2010)  Thus, 

the acquisition of phenotypic traits that enable cancer cells to migrate, invade tissues, and 

escape chemotherapeutic-mediated killing represent significant milestones in the course 

of carcinogenesis. 

Epithelial-mesenchymal transition (EMT) is a form of cellular transdifferentiation 

in which cells of an epithelial origin acquire mesenchymal phenotypic traits.  Nascent 

mesenchymal traits following EMT include decreased cell-to-cell adhesion, cytoskeletal 

remodeling, and an enhanced ability to interact with extracellular matrix (ECM), which 

confer migratory and invasive properties. (Zavadil and Böttinger, 2005)  Carcinoma cells, 

being of epithelial origin, can employ EMT as a means to dissociate and migrate from the 
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primary tumor, invade surrounding tissues and potentially gain access to the circulatory 

system. (Thiery, 2002)  Investigating the control of entry into an EMT program is, 

therefore, of particular significance for understanding the mechanisms that drive 

development of malignant states. 

1.1.2 Transforming Growth Factor β Promotes EMT 

EMT is a key process during normal growth and development, which is tightly 

regulated; however, acquisition of aberrant cellular signaling in cancer cells can prime 

them for entry into the transdifferentiation process through exposure to the morphogen 

transforming growth factor β (TGFβ). (Janda et al., 2002; Xie et al., 2004)  TGFβ 

activates Smad2 and Smad3 transcription factors, which initiate an extensive 

transcriptional response that results in the conversion of epithelial to mesenchymal 

differentiation states. (Valcourt et al., 2005)  The investigation of TGFβ-mediated EMT 

is complex, because EMT is inherently a process defined by a multitude of phenotypic 

responses. (Thiery and Sleeman, 2006)  Additionally, as a morphogen, TGFβ initiates a 

pleiotropic response and its effects differ depending on the particular cellular context. 

(Ahmed and Nawshad, 2007; Ranganathan et al., 2007)  However, activation of Smad3 is 

clearly a critical component in the initiation of TGFβ-mediated EMT. (Borthwick et al., 

2012; Dzwonek et al., 2009; Jinnin, 2005; Vincent et al., 2009)   

1.1.3 Bidirectional Regulation Between Redox Processes & TGFβ 

Oxidation-reduction (redox) reactions are by definition chemical reactions 

involving electron transfer from a nucleophile to an electrophile.  In a cellular context, 

reactive oxygen species (ROS) are electrophiles that are byproducts of cellular 

metabolism or primary products of enzymatic activity. (Winterbourn, 2008)  Antioxidants 
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are nucleophiles that exhibit exceptional reactivity with ROS and counterbalance against 

ROS, preventing excess accumulation within the cell. (Lyakhovich et al., 2006)  

Extensive cellular systems exist to detect the redox state of the cell and to buffer 

chemical insults. (Hurd and Murphy, 2009; Ortiz de Orué Lucana, 2012) Alteration of the 

redox balance by increasing antioxidants (increased nucleophilic tone) or by decreasing 

antioxidants (decreased nucleophilic tone) has the potential to significantly affect 

intracellular processes, such as metabolism and signal transduction. 

Down-regulation of a variety of intracellular antioxidants is among the numerous 

cellular responses to TGFβ signaling. (Arsalane et al., 1997; Boudreau et al., 2012; 

Felton et al., 2009; Hecker et al., 2009; Lee et al., 2010; Peltoniemi et al., 2004; Zhang et 

al., 2009)  Meanwhile, antioxidants antagonize Smad3 activation by TGFβ (Cucoranu et 

al., 2005; Fatma et al., 2009; Meurer et al., 2005; Michaeloudes et al., 2011; Ono et al., 

2009) and prevent TGFβ-mediated EMT (Felton et al., 2009; Lee et al., 2010; 

Michaeloudes et al., 2011; Rhyu et al., 2005; Zhang et al., 2009).  The down-regulation 

of antioxidants during the course of EMT may have a critical role in the enabling or 

enhancement of TGFβ signaling. 

1.1.4 Drug Resistance Mediated by Redox Related Transporter  

Chemotherapeutic drug resistance is another mechanism driving carcinogenesis.  

A major mechanism for acquiring a multidrug resistance (MDR) phenotype is through 

elevated expression of transporters on the plasma membrane that efflux a diverse 

substrate repertoire, including various chemotherapeutic agents. (Sharom, 2008) The 

ABCG2 transporter, for example, is capable of inducing a MDR phenotype. (Stacy et al., 

2013)  The antioxidant GSH is among the many substrates exported by ABCG2 and 
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transcriptional programs that control ABCG2 up-regulation also control antioxidant 

expression. (Brechbuhl et al., 2010; Ji et al., 2013)  Therefore, MDR cells may also 

exhibit increased antioxidant activity.  

MDR phenotypes can be assessed through a functional assay for ABCG2 

transporter activity.  In a cellular staining assay, cells with high transporter activity do not 

take up as much dye as the rest of the cells, which results in a discernible subpopulation 

upon flow cytometric analysis. (Hirschmann-Jax et al., 2004)  This subpopulation, the so-

called side population (SP), is recognized as a source of highly tumorigenic cancer cells. 

(Wu and Alman, 2008)  Thus the presence of a SP reflects heterogeneity of transporter 

activity within a cell line; however, the actual kinetic mechanisms responsible SP 

formation are unclear.  TGFβ signaling, like antioxidants, leads to the down-regulation of 

ABCG2 as well as the size of the SP.  This modulation of the SP size may be a good 

setting in which the kinetic mechanisms that generate a SP and are responsible for MDR 

can be uncovered. 

1.2 Overall Objective 

Transformation of cancer cells via TGFβ signaling results in wide spread 

phenotypic responses, including transdifferentiation via EMT, remodeling of the 

intracellular redox environment through antioxidant down-regulation, and reduction of 

SP size.  TGFβ signaling itself is inhibited by antioxidants.  The possibility, therefore, 

exists that TGFβ-mediated modification of the redox environment functions to further 

enhance TGFβ signaling.  The ABCG2 transporter shares an upstream regulator with 

antioxidants and may directly participate in redox processes through transport of 

glutathione.  Side populations are population-level phenotypes that arise when a 
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subpopulation of cells expresses elevated ABCG2 transporter-mediated efflux.  

Therefore, the presence of a SP in a population may reflect heterogeneity of redox 

regulation within a population; however, how heterogeneity of ABCG2 activity manifests 

at a basic kinetic level is not understood.  The overall objective of this research was to 

investigate how redox regulated processes contribute to complex phenotypes that 

arise in the context of TGFβ-mediated EMT using multivariate and systems 

approaches.  The central hypothesis of this dissertation is that differential activation of 

antioxidant pathways operates across multiple temporal or physical scales, but within 

specific constraints, to define complex phenotypes during TGFβ-mediated EMT.  

Specifically, TGFβ down-regulates intracellular antioxidant function at the scale of gene 

transcription, mediated by Smad3, which renders the intracellular environment more 

conducive to Smad3 activation at the level of signal transduction such that a positive 

feedback loop is established that stabilizes mesenchymal differentiation.  Additionally, 

co-regulation of ABCG2 with antioxidant genes will result in decreased SP size, a 

population level property, following TGFβ-mediated EMT through heterogeneous 

attenuation of transporter activity at the single-cell level.   

These hypotheses were tested by first establishing the co-existence of TGFβ-

mediated regulation of the redox environment with redox regulation of TGFβ signaling 

within the same experimental context, then by implementing multivariate approaches to 

simultaneously investigate the time courses of TGFβ signaling, redox regulation, and 

epithelial-mesenchymal transition.  Finally, the role of single-cell heterogeneity of 

ABCG2 activity within a population during TGFβ-mediated EMT was investigated 

through multiscale computational modeling. 
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1.3 Specific Aim 1: Define The Biological Scales In Which Redox Regulation Of 

And In Response To TGFβ Occur Within A Singular Experimental Model 

The relationship between the intracellular redox environment and TGFβ is 

multifaceted.  TGFβ is known to remodel the intracellular redox environment through 

enhancement of ROS production and antioxidant down-regulation while TGFβ signaling 

can be inhibited by antioxidants or enhanced by ROS.  However, most investigations 

study these processes in isolation of one another and it was not known if both redox 

relationships could coincide within the same experimental model.  The hypothesis of 

Specific Aim 1 was that A549 cells down-regulate antioxidants in response to TGFβ 

signaling and attenuate TGFβ signaling by antioxidant functions.  Using biochemical 

techniques, we demonstrated the loss of epithelial phenotypic markers and acquisition of 

mesenchymal phenotypic markers following TGFβ treatment.  We also observed 

decreased expression of antioxidants proteins coupled with upregulation of NOX4, a 

source of ROS, which coincided with increased oxidation of a redox sensitive dye.  

Additionally, we demonstrated the sensitivity to inhibition of TGFβ-mediated signal 

transduction (Smad3 activation), transcription (Smad3 promoter activity), and phenotypic 

transition (E-cadherin downregulation) by intracellular antioxidants.  Therefore, we 

identified multiple relationships between TGFβ and the redox environment, operating at 

multiple biological scales, within the same experimental model. 
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1.4 Specific Aim 2: Interrogate The Roles And Time Scales Of Regulation Of The 

Redox Environment And TGFβ Signaling In The Context Of EMT Using 

Multivariate Analysis 

Following TGFβ treatment, A549 cells exhibit mesenchymal differentiation and a 

perturbed redox environment, including downregulation of antioxidants.  The resultant 

phenotype represents the culmination of a dynamic process, during which the multiple 

aspects of the TGFβ/redox relationship can operate.  Whether TGFβ signaling and redox 

processes integrate across multiple time scales to drive EMT is unknown.  The hypothesis 

of Specific Aim 2 was that increased cellular oxidation during TGFβ-mediated EMT 

reinforces TGFβ signaling in a feed-forward manner during EMT as well as contribute to 

maintenance of mesenchymal phenotype.  Using custom in-cell western blotting (ICW) 

assay, we interrogated the multivariate phenotype of A549 cells during the course of 

EMT.  Through principal component analysis (PCA) we were able to reduce the number 

of dimensions in the data into multivariate phenotype trajectories.  PCA was then applied 

to an extensive microarray data set in which it was identified that TGFβ treatment 

resulted in widespread downregulation of cellular antioxidants in parallel time course 

with epithelial-mesenchymal transdifferentiation.  Redox reprogramming was extensive, 

resulting in functional modification that decreased nucleophilic tone and impaired the 

cell’s ability to eliminate electrophilic insults.  Finally, we challenged TGFβ-transformed 

cells with antioxidants and found the resultant mesenchymal phenotype to be stable to 

redox perturbation.  Therefore, we find that during TGFβ-mediated EMT, regulation of 

the redox environment coincides with transdifferentiation and that redox-enhanced 

TGFβ-signaling is unlikely to promote EMT or stabilize the mesenchymal phenotype. 
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1.5 Specific Aim 3: Define The Role Of Transporter Heterogeneity On The 

Emergence Of Side Populations And Dynamic Regulation Of Side Populations 

During TGFβ-Mediated EMT.  

ABCG2 transporter shares transcriptional regulation with many antioxidants.  

During TGFβ-mediated EMT, down-regulation of ABCG2 results in decreased SP size; 

however, it is not understood how single-cell heterogeneity of ABCG2 activity can 

manifest within the population as a SP nor is it known how TGFβ-mediated down-

regulation of transporter activity modulates the SP size.  The hypothesis of Specific Aim 3 

was that the transporter activity of SP cells is significantly higher than that of NSP cells 

and that that down-regulation of ABCG2 during EMT results in decreased frequency of 

high transporter-activity cells, suppressing the size of the SP.  In A549 cells we observed 

that SP size was dynamic in culture, which was attenuated with TGFβ treatment, where 

SP size was correlated with ABCG2 expression.  To counteract the subjective nature of 

the conventional SP measurement, we developed objective tools to measure SP size, and 

validated these tools with a new experimental condition using the antioxidant tBHQ to 

increase SP size.  Using the newly developed tools, we implemented a multiscale model 

in which heterogeneity of transporter activity was simulated at the single-cell level as 

means to investigate emergence of a SP at the population level.  We found that SPs 

formed within kinetic scenarios in which a majority of the cell population exhibited very 

little transporter activity while a subpopulation of cells exhibited transporter activity in 

proportion to SP size and with a frequency proportional to SP size.  These results indicate 

that within cell populations exhibiting a SP, a small subpopulation of cells exhibits much 

greater transporter activity than the majority of the population.   
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CHAPTER 2  LITERATURE REVIEW 

 

 

2.1 Redox Species & Processes 

2.1.1 Hydrogen Peroxide in Redox Biology 

Reactive oxygen species (ROS) participate in a wide variety of cellular processes, 

including metabolism and signal transduction.  When electrophiles, such as ROS, accept 

donated electrons from a nucleophile in a chemical reaction, we describe the event as an 

oxidation-reduction reaction, or redox reaction.  ROS is also a general term used to 

describe a class of oxygen-containing chemical species including hydrogen peroxide 

(H2O2), superoxide (O2˙
-
), hydroxyl radical (˙OH), and others. (Murphy et al., 2011)  

Each ROS is a distinct chemical entity, with unique reactive properties.  Radical species, 

such as O2˙
-
 and ˙OH, are distinct from non-radical species, such as H2O2, in that they 

possess an unpaired electron, which upon reaction can initiate a chain reaction until 

reacting with another radical species in 1-electron transfer reactions. (Nordberg and 

Arnér, 2001)  The radicals O2˙
-
 and ˙OH are also distinguished from H2O2 by their 

exceptionally short lifetimes in the cell.  Where ˙OH is short-lived due to indiscriminate 

reactivity with nearby biomolecules, O2˙
-
 is short lived because of the exceptionally fast 

reaction kinetics of superoxide dismutase (SOD). (Winterbourn, 2008) The short 

lifetimes, lack of reaction specificity, and potential to initiate free radical chain reactions 

preclude O2˙
-
 and ˙OH from participating as redox regulators of signal transduction. 

(Forman et al., 2010)  H2O2 is, relatively, much more stable than O2˙
-
 and ˙OH, with 
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extracellular diffusion scales on the order of 1 mm, and on the order of 5 µm within the 

intracellular compartment, where it is subject to degradation by antioxidant clearance 

systems. (Winterbourn, 2008)  With appropriate scales of diffusion and favorable 

reaction kinetics, H2O2 engages in specific reversible 2-electron reactions with protein 

thiols. (Forman et al., 2010)  The favorable chemistries of H2O2 position it to be the 

primary ROS responsible for exerting control in biological systems through redox 

mechanisms.  

2.1.2 Control of the Redox State 

It is critical that signaling systems demonstrate the capacity to initiate and 

terminate signals.  In cellular systems, a vast network of biochemical pathways produces 

and degrades ROS in a context dependent manner.  Incomplete reduction of oxygen in 

mitochondria during oxidative phosphorylation results in the formation of O2˙
-
, which is 

rapidly dismutated by SOD into H2O2, which can diffuse into other parts of the cell and 

engage in redox signaling through reversible thiol oxidation. (Murphy, 2009)  NADPH 

oxidases are a group of membrane bound enzymes that operate in a wide array of 

biochemical processes, such as microbial killing (Parkos et al., 1987) and sensing 

metabolic states (Owada et al., 2013).  A number of the NOX members (NOX1, NOX1, 

NOX3, NOX5) produce O2˙
-
 while others (NOX4, DUOX1, DUOX2) produce H2O2. 

(Leto et al., 2009; Takac et al., 2011)  Whether H2O2 is derived from a stimulated source, 

such as NOX enzymes, as part of metabolic activity in the mitochondria, or through 

interactions with the environment, once inside a cell, the diffusion of H2O2 is much more 

restricted than in the extracellular space.  Cellular antioxidant systems, such as 

peroxiredoxins and glutaredoxins, quickly react with H2O2, thereby limiting the potential 
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range of H2O2 activity to targets proximal to the source. (Winterbourn, 2008)  An 

antioxidant is a nucleophile and when referenced in general terms, represents a collection 

of nucleophilic species with diverse chemical properties.  The robustness of a cells 

capacity to negate an electrophilic insult is characterized as the nucleophilic tone of the 

cell where a larger nucleophilic tone reflects an enhanced antioxidant capacity.  Perturbed 

regulation leading to an inadequate nucleophilic tone for a given electrophilic challenge 

would reflect a state of oxidative stress. (Forman et al., 2014) 

Electrophilic insults can present through a variety of chemical mechanisms.  Each 

of the antioxidant enzymes has as distinct role in the coordinated elimination of specific 

electrophilic insults.  The thioredoxin/thioredoxin redutase system operates primarily to 

maintain balance of disulfides, an oxidized configuration of containing sulfur-sulfur 

bonds, including protein dithiols and other antioxidant such as peroxiredoxins. (Lu and 

Holmgren, 2013) Peroxiredoxins are found in high abundance in cells, exhibiting very 

high reactivity towards peroxides and other reactive species. (Poole et al., 2011)  

Glutathione (GSH) is an important and high abundance tripeptide antioxidant having a 

role in antioxidant defense mechanisms as well as in redox regulation of signaling. (Lu, 

2013) Glutathione is found in the reduced state (GSH) and oxidized state (GSSG) in the 

cell where glutathione peroxidase, among others, can reduce a substrate, such as 

hydrogen peroxide, at the expense of oxidizing GSH, converting 2 GSH into GSSG.  

Glutahione reductase subsequently reduces GSSG. (Lillig et al., 2008)  Though numerous 

cellular antioxidants participate in cellular signaling of some form, GSH has a unique role 

in the redox regulation of signaling. 
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2.1.3 Redox Signaling via S-Glutathionylation 

H2O2 is the prototypical example of a ROS possessing proper traits to operate as a 

second messenger in signal transduction; however, there are several other species with 

similar chemistries.  H2O2, peroxinitrie, and peroxynitrous acid react via 2-electron 

oxidation with protein thiols to form sulfenic acid adducts. (Bindoli and Rigobello, 2013; 

Radi et al., 1991; Trujillo and Radi, 2002)  Sulfenic acids are highly labile, reacting 

rapidly with abundant GSH in a process of S-glutathionylation, which can be reversed by 

antioxidants such as thioredoxin or glutaredoxin. (Grek et al., 2013)  The post-

translational GSH modification of a protein can have a role in inactivating or localizing to 

specific cellular compartments. (Janssen-Heininger et al., 2013)  The vast intracellular 

antioxidant networks are charged with the task of buffering exogenous and endogenous 

electrophilic challenges to protect the integrity of intracellular redox signaling pathways. 

2.2 Epithelial-Mesenchymal Transition in Cancer 

2.2.1 Defining Features of EMT 

Epithelial-mesenchymal transition (EMT) is a form of cellular transdifferentiation 

in which cells of an epithelial origin acquire mesenchymal phenotypic traits.  The 

transition is accompanied by a loss of cell-to-cell contacts, loss of apical-basal polarity, 

increased processing of and interaction with the extracellular matrix, enhanced motility, 

and resistance to apoptosis. (Savagner, 2010)  A switch of relative abundances of E-

cadherin and N-cadherin form the basis of the cadherin switch during EMT. (Araki et al., 

2011; Hazan et al., 2004; Maeda et al., 2005; Wheelock et al., 2008)  Though several key 

markers, such as E-cadherin and N-cadherin, are used as surrogate markers, vast 

differences in phenotypes manifest morphologically and biochemically following EMT. 
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2.2.2 Induction of EMT 

EMT can be induced in transformed carcinoma cells through a variety of 

mechanisms, such as TGFβ (Oft et al., 1998), angiotensin II (Chang et al., 2011), H2O2 

treatment (Gorowiec et al., 2012), and ionizing radiation (Zhou et al., 2011).  Recently it 

was observed that interactions between tumor cells and platelets can lead to release of 

platelet-derived TGFβ and induction of EMT. (Labelle et al., 2011) Also, within the 

tumor microenvironment cancer-associated fibroblasts induced EMT in a redox-

dependent manner, generating cells with cancer stem cell like features. (Giannoni et al., 

2011) 

2.2.3 EMT Promotes Deleterious Cancer Phenotypes 

TGFβ is a morphogen of differentiation.  In breast tumors, TGFβ was a major 

determinant of intra-tumor heterogeneity and activation of cancer stem cell marker 

expression. (Shipitsin et al., 2007)  TGFβ-mediated EMT has been linked to the induction 

of a cancer stem cell phenotype in breast and pancreatic tumors. (Blick et al., 2010; Mani 

et al., 2008; Wang et al., 2012)  It has also been shown to play a role in producing 

circulating tumor cells, which are potential sources of metastases. (Yu et al., 2013)  

Therefore, TGFβ-mediated EMT has a significant impact on the course of cancer 

progression. 
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2.3 Transforming Growth Factor β Signaling 

2.3.1 Canonical TGFβ Signaling via Smad Transcription Factors 

Transforming growth factor β (TGFβ) is a cytokine that can be produced within a 

tumor microenvironment by stromal cells and act upon carcinoma cells. (Bierie and 

Moses, 2006; Hawinkels et al., 2012)  TGFβ is produced as a homodimer in a latent 

form, which can be sequestered in the extracellular matric and activated via cleavage by a 

v integrin. (Munger et al., 1999; Shi et al., 2011; Wakefield et al., 1988)  Homodimeric 

TGFβ bids to a TGFβ receptor complex, initiating a cross-linking causing type II 

receptors to phosphorylate type I receptors.  Then type I receptors phosphorylate Smad2 

and Smad3 transcription factors. (Attisano and Wrana, 2002; Nakao et al., 1997)  C-

terminus phosphorylation of Smad2 and Smad3 primes the transcription factors to bind 

with Smad4, which initiates nucleocytoplasmic shuttling of Smads into the nucleus in the 

phosphorylated state and exports dephosphorylated Smads in a dynamic process that 

encodes TGFβ signal strength and duration in the subsequent transcriptional response. 

(Inman et al., 2002; Schmierer et al., 2008)  Upon reaching the nucleus, phosphorylated 

Smads are free to establish transcription activation or repression complexes with 

additional nuclear factors.  

2.3.2 Non-canonical TGFβ Signaling 

Signaling at the activated TGFβ receptor complex diverges from the typical Smad 

activation and lead to the activation of several alternative singling pathways, including 

MAPK, Rho-like, and PI3K pathways. (Zhang, 2009)  Non-canonical signaling provides 

a means expand the combinatorial response to a singular ligand and alters the context in 

which the Smad responses can occur. (Samarakoon and Higgins, 2008)  Integration of 
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canonical and non-canonical pathways can have a critical role in the response to TGFβ, 

such as in the induction of EMT, in which MAPK and PI3K pathways contribute 

necessary transcription factors to the response. (Chen et al., 2011)  

Epithelial/mesenchymal differentiation states are not simple phenotypes; the 

orchestration of moving from one to the other presents a substantial challenge in 

coordination of such extensive responses. 

2.3.3 Extent of Transcriptional Response in TGFβ-mediated EMT 

TGFβ-mediated EMT relies upon the activation of Smad3 to carry out key 

components of the phenotypic response. (Borthwick et al., 2012; Dzwonek et al., 2009; 

Jinnin, 2005; Vincent et al., 2009) The extent of the transcriptional reprogramming is 

impressive with over 2000 genes demonstrating differential regulation with TGFβ 

treatment in A549 cells. (Ranganathan et al., 2007) It is clear that the scope of the 

transcriptional response is not limited to the narrow set of markers used to define EMT. 

2.3.4 Regulation of Redox Active Cellular Components 

TGFβ can modulate the redox environment through numerous pathways, 

including up-regulation of NOX4, which is constitutively active and produces H2O2. 

(Boudreau et al., 2007; Hecker et al., 2009; Nisimoto et al., 2010; Takac et al., 2011) 

(Michaeloudes et al., 2011)  Alternatively, TGFβ can mediate the down regulation of 

glutaredoxin, GSH synthesizing enzymes, catalase and SOD. (Arsalane et al., 1997; Lee 

et al., 2010; Michaeloudes et al., 2011; Peltoniemi et al., 2004) Therefore TGFβ has the 

potential to affect the redox environment by increasing electrophilic load and decreasing 

nucleophilic tone. 
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2.3.5 Redox Regulation of TGFβ Signaling 

Numerous redox regulatory responses have identified at several points of TGFβ 

signaling.  TGFβ growth factors are active as dimeric species, capable of activating 

dimeric TGFβ receptors. (Attisano and Wrana, 2002) Dimeric TGFβ is stabilized by an 

interchain disulfide bond as well as hydrophobic interactions. (Daopin et al., 1992) 

Treatment of monocyte-derived TGFβ with NAC and DTT resulted in monomeric TGFβ 

species with decreased Smad2 phosphorylation upon treatment. (Lichtenberger et al., 

2006) NAC conditioning resulted in reduction of the TGFβ dimer to monomer in a dose-

dependent manner. (Meurer et al., 2005) The potential redox sensitivity of these 

components indicates redox regulation may operate with the extracellular space before 

signaling has an opportunity in the cell. 

A larger body of work supports a mechanism of antioxidant attenuation of Smad 

activation by TGFβ.  Treatment of cells with NAC or GSH decreased phospho-Smad 

levels (Cucoranu et al., 2005; Fatma et al., 2009; Meurer et al., 2005; Ono et al., 2009; 

Rhyu et al., 2005; Samarakoon et al., 2011) and decreased Smad-mediated transcriptional 

responses (Junn et al., 2000; Kopp et al., 2006; Meurer et al., 2005; Vayalil et al., 2007). 

Furthermore, Smad3 contains a zinc-binding motif in the MH1 domain in which 

Cys
64

, Cys
109

, and Cys
121

, and His
126

 coordinate zinc and mediated DNA binding in a 

coordinated water-dependent manner. (Chai et al., 2003) Zinc binding represents a mode 

of redox regulation in which loss of zinc could abolish DNA-binding potential. (Maret, 

2006) This motif was identified in a computational investigation of sequences as a 

potential site of redox regulation. (Fan et al., 2009)  Smad3 may exhibit redox sensitivity 
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based upon a differential DNA affinity that is determined by redox-mediated zinc 

coordination.  

2.4 ABCG2 Establishes Multidrug Resistant Phenotypes 

2.4.1 Multidrug Resistant Phenotypes & SP Cells 

Multidrug resistance (MDR) is a cellular phenotype in which cells display 

improved survival in presence of cytotoxic agents.  ABCG2 is a drug efflux pump and its 

up-regulation in a portion of a cell population can confer a MDR phenotype to the cells. 

(Videira et al., 2014)  The side population (SP) assay is a method to identify cells with a 

particularly high rate of ABCG2 transporter-mediated efflux. (Goodell et al., 1996; Zhou 

et al., 2001) The SP assay therefore identifies MDR subpopulations. 

2.4.2 ABCG2 Expression 

The ABC superfamily transporters are characterized by their ability to bind and 

efflux a wide array of substrates in an ATP-dependent manner. (Sharom, 2008)  ABCG2 

and a number of related transporters accept GSH as a substrate and mediate its efflux. 

(Brechbuhl et al., 2010; 2009; Leier et al., 1996; Lorendeau et al., 2014; Salerno and 

Garnier-Suillerot, 2001; Salerno et al., 2004; SHEN et al., 1996)  Additionally, ABCG2 

expression is regulated by the antioxidant master regulator Nrf2 (Adachi et al., 2007; 

Hong et al., 2010; Singh et al., 2010; Wang et al., 2014), and ABCG2 activity produced 

antioxidant-like effects. (Kubota et al., 2010; Maher et al., 2014; Shen et al., 2010)  These 

findings indicate that ABCG2 activity and the MDR phenotype may be correlated with 

antioxidant expression within a cell population.   



www.manaraa.com

 18 

CHAPTER 3  MULTISCALE REDOX REGULATION DURING 

TGFβ-MEDIATED EPITHELIAL-MESENCHYMAL 

TRANSITION 

 

 

3.1 Introduction 

During carcinogenesis, cells undergo a progression of transformations that enable 

them to undergo indefinite proliferation, a hallmark of cancer, and invade healthy 

surrounding tissues, and avoid cell death. (Hanahan and Weinberg, 2000)  Transforming 

growth factor β (TGFβ) induces epithelial-mesenchymal transition (EMT) and also alters 

intracellular redox regulation.  These processes are the subjects of many investigations; 

however, they are mostly studied in isolation.  A higher fidelity understanding of the 

carcinogenic process is achieved through the investigation of TGFβ-mediated EMT from 

a multidimensional standpoint in which modulation of the redox environment is 

understood in the context of the change in phenotype associated with EMT. 

The extent of tumor growth and invasion into normal tissues is of great 

importance to clinical outcomes for cancer patients.  For example, in non-small cell lung 

carcinoma, TNM staging has the greatest prognostic value, where larger primary tumors 

(T), more extensive lymph node involvement (N), and presence of metastases (M) are 

associated with poorer outcomes. (Goldstraw et al., 2011)  EMT is a process whereby 

epithelial cells transdifferentiate into cells with a mesenchymal phenotype.  Properties of 

enhanced motility and migration may enable EMT-derived cells to break away from 
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primary tumors, forming metastases in distant tissues, and establishing secondary disease 

sites. (Yu et al., 2013)  Furthermore, EMT has been attributed to generation of a stem 

cell-like phenotype, so called “cancer stem cells” (CSCs). (Mani et al., 2008)  EMT-

derived CSCs exhibit chemotherapeutic resistance and may represent a cellular subset 

that survives chemotherapy and mediates recurrence of tumors. (Chen et al., 2013; Jiang 

et al., 2014)  The means by which carcinoma cells undergo EMT and acquire such 

deleterious properties is, therefore, of great interest.  

Within the tumor microenvironment, TGFβ participates in a variety of processes.  

TGFβ signaling acts on carcinoma cells directly, on the surrounding stromal cells, and on 

immune cells within the microenvironment. (Pickup et al., 2013)  In particular, TGFβ can 

mediate the induction of EMT in carcinoma cells. (Bierie and Moses, 2010; Ikushima and 

Miyazono, 2010) TGFβ signaling leads to phosphorylation of Smad2 and Smad3 

transcription factors, which translocate into the nucleus and are then able to modify gene 

expression. (Moustakas et al., 2001; Santibanez et al., 2011; Shi and Massague, 2003; 

Thatcher, 2010)  A key means of carcinogenic progression due to EMT is the change in 

relative cadherin expression typified by decreased E-Cadherin expression and increased 

N-Cadherin expression, known as a “cadherin switch”, which facilities cell motility and 

invasion. (Appolloni et al., 2014; Araki et al., 2011; Hazan et al., 2004)  Poorer 

prognoses are associated with patients whose tumors were found to have undergone a 

cadherin switch. (Gravdal et al., 2007; Jäger et al., 2010; Tomita et al., 2000)  

Phosphorylation of Smad3 is a critical aspect of TGFβ signaling for initiating a cadherin 

switch. (Diamond et al., 2008; Do et al., 2008; Kocić et al., 2011; Vyas-Read et al., 2014)  
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Thus, Smad3 and its activation via phosphorylation are of particular interest in resolving 

the mechanisms of TGFβ-mediated phenotypic transitions. 

The TGFβ receptor complex, upon TGFβ stimulation, rapidly activates Smad3 via 

phosphorylation.  Smad3 activity is regulated at number of levels.  In addition to the 

requirement of phosphorylation, Smad3 must be translocated into the nucleus in order to 

mediate changes in transcription. (Hill, 2009)  Smad localization in the nucleus rapidly 

follows TGFβ signaling and phosphorylation of Smads results in differential 

nucleocytoplasmic shuttling, which leads to nuclear accumulation. (Inman et al., 2002; 

Schmierer and Hill, 2005)  pSmad2 and pSmad3 are dephosphorylated by PPM1A in the 

nucleus, facilitating nuclear export. (Lin et al., 2006)  Down-stream transcriptional 

activities of Smads are tightly regulated by the kinetic processes that determine pSmad 

levels. (Zi et al., 2011)  Thus the processes promoting and detracting from pSmad levels 

can have a significant impact on transcriptional activity and therefore on phenotypes 

resulting from TGFβ exposure.  

All intracellular processes occur within the context of the intracellular redox 

environment.  A wide variety of factors influence the rates of redox reactions at any given 

time.  Of particular interest is the observation that the addition of the antioxidant N-

acetyl-L-cysteine (NAC) to cells results in decreased Smad phosphorylation upon TGFβ 

stimulation. (Samarakoon et al., 2011)  NAC has been shown to mediate a number of 

distinct mechanisms.  TGFβ growth factors are active as dimeric species, capable of 

activating dimeric TGFβ receptors. (Attisano and Wrana, 2002) Dimeric TGFβ is 

stabilized by an interchain disulfide bond as well as by hydrophobic interactions. (Daopin 

et al., 1992) Treatment of monocyte-derived TGFβ with NAC and DTT resulted in 
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decreased TGFβ activity through the formation of TGFβ monomeric species that exhibit 

competitive binding for the TGFβ receptor.  Conditioning of TGFβ with reductants 

decreased Smad2 phosphorylation upon treatment. (Lichtenberger et al., 2006) Thus 

NAC may function at a step prior to intracellular signal transduction; however, GSH, 

DPI, and the SOD mimetic (MnTBaP) treatment decreased PAI-1 promoter activity. 

(Vayalil et al., 2007) Thus, the role of antioxidant antagonism of TGFβ signaling in A549 

cells may manifest through a variety of mechanisms.  Furthermore, direct treatment with 

H2O2 has been associated with enhanced levels of Smad phosphorylation. (Gorowiec et 

al., 2012; Vyas-Read et al., 2014)  These observations suggest that the redox environment 

may directly participate in the regulation of Smad phosphorylation. 

Perturbed redox regulation is a common feature of cancer cells.  Alterations in 

cellular metabolism shift ATP production away from more efficient oxidative 

phosphorylation and towards aerobic glycolysis, termed the “Warburg effect”, which 

better situates the cells for enhanced proliferation rates. (vander Heiden et al., 2009)  

Metabolic process in the glycolytic pathway can regulate the redox environment.  

Perturbation of the glycolytic pathway has a direct impact on the redox state of the cell. 

(Anastasiou et al., 2011)  As such, the resting redox state of cancer cells is often altered. 

The redox state of the cell can also be modulated in cancer cells by changes in 

expression of antioxidant enzymes.  The redox processes within the cell are diverse and 

are regulated by a variety of sources of electrophiles and nucleophiles.  Electrophiles, 

such as ROS and RNS, react with nucleophiles.  These reactions can take place on 

proteins involved in signal transduction or may be mediated by antioxidant proteins, 

clearing electrophiles through enzymatic reactions. 
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The response to TGFβ exposure is extensive.  In addition to the induction of 

EMT, TGFβ signaling is known to modulate the intracellular redox environment through 

up-regulation of NADPH oxidase 4 (NOX4) (Boudreau et al., 2012), a source of ROS, 

and down-regulation of antioxidant enzymes. . (Arsalane et al., 1997; Lee et al., 2010; 

Michaeloudes et al., 2011; Peltoniemi et al., 2004)  Though TGFβ-mediated induction of 

EMT and down-regulation of antioxidant enzymes is fairly well studied, the recognition 

that the two processes coincide has only recently been appreciated. (Michaeloudes et al., 

2011) Further, these processes are often investigated in various cellular model systems.  

It is unclear to what extent the process occurring within a singular experimental model.  

More importantly, it is unclear whether redox regulation on one scale (i.e. antioxidant 

expression) influences redox regulation on another scale (i.e. antioxidant inhibition of 

TGFβ signaling) within the context of the same initiating signal.  We hypothesize that 

A549 cells will exhibit multiscale redox regulation with respect to TGFβ signaling.  That 

is to say A549 cells will simultaneously display redox regulation at the scale of signal 

transduction in the antioxidant inhibition of TGFβ signaling and at the scale of protein 

expression due to down-regulation of antioxidant system enzymes. 

We aim to determine the scope of redox processes in A549 cells during TGFβ 

signaling, specifically whether cells simultaneously exhibit 1) antioxidant sensitivity in 

induction of TGFβ-mediated EMT and 2)  TGFβ-mediated antioxidant down-regulation.  

We aim to identify the kinetic profile of antioxidant antagonism of TGFβ-mediated Smad 

phosphorylation and activity.  Additionally, we aim to develop approaches that enable the 

multivariate characterization of phenotype, with respect to epithelial/mesenchymal 

differentiation and antioxidant expression, during TGFβ-mediated EMT. 
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In this investigation, we establish the antioxidant sensitivity of TGFβ-mediated 

induction of EMT and the down-regulation of cellular regulators of antioxidant function 

within the same experimental model.  In doing so, we demonstrate the efficacy of higher-

throughput approaches to investigate multivariate aspects of cellular phenotype during 

EMT. 

3.2 Results 

3.2.1 Pleiotropic Response to TGFβ Stimulation 

TGFβ treatment of A549 cells results in differential regulation of numerous 

species.  Over the course of 3 days, TGFβ treatment (100 pM) led to the progressive 

down-regulation of E-Cadherin (Figure 3.1-A) and up-regulation of numerous 

mesenchymal markers (Figure 3.1-B).  In addition to markers of phenotype, species 

involved in redox regulation exhibited altered expression with TGFβ treatment, such as 

the down-regulation of thioredoxin reductase 1 (TrxR1) and up-regulation of NADPH 

oxidase 4 (NOX4) (Figure 3.1-C).  Altered expression of these species was accompanied 

by increased pSmad2 and pSmad3 levels (Figure 3.1-D), which was highest after 24 

hours of stimulation before decreasing over subsequent days. 
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Figure 3.1  Changes in Protein Expression During TGFβ-Mediated EMT . 

Western blot analysis of A) epithelial markers, B) mesenchymal markers C) thioredoxin 

reductase 1 (TrxR1) & NADPH oxidase 4 (NOX4), and D) pSmad2 and pSmad3 

expression levels over the course of 3 days of 100 pM TGFβ treatment of A549 cells 

along with α-tubulin loading control staining.  Data are representative of 3 independent 

biological replicates (n=3). 
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3.2.2 NAC Antagonizes TGFβ-Mediated Smad2/3 Phosphorylation 

NAC has been reported to inhibit TGFβ-mediated Smad phosphorylation by a 

number of mechanisms.  To identify the susceptibility of recombinant TGFβ-mediated 

Smad2 & Smad3 phosphorylation in A549 cells to NAC co-treatment several NAC 

treatment conditions were assessed.  In the control condition, no NAC was used and cells 

were treated with 20 pM TGFβ for 30 minutes.  The ligand treatment condition consisted 

of 10 mM NAC treatment of TGFβ for 1 hour at 37˚C prior to treatment of the cells with 

the NAC-treated TGFβ.  For the cell treatment condition, A549 cells were treated with 10 

mM NAC for 1 hour prior to treatment with TGFβ.  Following treatment, cells were lysed 

and lysates were loaded onto SDS-PAGE for electrophoresis.  Cellular protein transferred 

to PVDF membranes were then probed via western blotting and imaged with a LiCor 

Odyssey imaging system (Figure 3.2).  The fluorescence intensities were quantified and 

normalized against α-tubulin loading control (Figure 3.3). 

Upon stimulation with 20 pM TGFβ for 30 min, pSmad2 and pSmad3 levels were 

found to be dramatically increased compared to unstimulated control (Figure 3.3).  The 

magnitudes of pSmad2 and pSmad3 levels in the ligand and cell NAC-treatment 

conditions were decreased compared to the untreated control.  Furthermore, the 

magnitudes of response in the cell treatment condition were decreased (~50%) compared 

to the ligand treatment condition. 
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Figure 3.2  pSmad2 & pSmad3 Western Blots of NAC Conditions. 

Phospho-Smad2 & Smad3 levels in A549 cells measured via western blot after 

stimulation with 20 pM TGFβ for 30 minutes.  In the ligand treatment condition, TGFβ 

was incubated with 10 mM NAC for 1 hour at 37˚C prior to treatment of cells.  In the cell 

treatment condition, A549 cells were treated with 10 mM NAC for  1 hour.  Phospho-

Smad signals were normalized to α-tubulin loading control.  Blots are representative of 

three replicates.  
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Figure 3.3  Quantification of pSmad2 & pSmad 3 NAC Conditions Western Blot. 

Western blot band intensities for A) pSmad2 and B) pSmad3 were measured using a 

LiCor Odyssey imaging system with infrared fluorescently labeled secondary antibodies 

against primary antibodies or pSmad2, pSmad3, and α-tubulin.  Fluorescence intensities 

for the pSmad2 and pSmad3 bands were normalized to the fluorescence intensity of the 

respective α-tubulin band.  Normalized intensities are plotted as mean±standard error of 

the mean.  Statistical differnces were assessed using two-way ANOVA with multiple 

comparisons (* p < 0.05).  Experiments were performed in triplicate (n=3).  
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3.2.3 In-Cell Western Analysis of pSmad3 Expression Levels 

To assess pSmad3 phosphorylation kinetics in A549 cells, we implemented a 

higher-throughput approach to assess phospho-protein expression, an in-cell western 

(ICW) assay.  Cells were plated in 96-well plates and stimulated with TGFβ for the 

specified time.  Cells were fixed within the wells and stained with a primary antibody 

against pSmad3, to which a fluorescently labeled secondary antibody was targeted.  The 

fluorescence intensity of the stained cells was assessed via imaging in a LiCor Odyssey 

(Figure 3.4).  The 96-well format enables higher throughput analyses.  The time course of 

pSmad3 levels across 4 orders of magnitude of TGFβ stimulation was assessed using the 

ICW format (Figure 3.5).  In general, the time courses followed a profile of steep 

activation followed by a plateau of intensity.  With increasing TGFβ dose, the time to 

peak response was decreased.  With the exception of the 200 pM condition, increasing 

does corresponded with increased signal amplitude.  Finally, in all conditions, except the 

0.2 pM TGFβ condition, pSmad3 levels approached a common plateau level near 3 hours. 
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Figure 3.4  ICW Assay Wells with pSmad3 Staining. 

Fluorescence intesities in pSmad3 stained wells of a 96-well plate from an ICW assay 

following treatment with 200 pM TGFβ. 

 

 

 

 

Figure 3.5  pSmad3 In-Cell Western TGFβ Time Course & Dose Response. 

ICW analysis of pSmad3 levels in A549 cells during the course of TGFβ treatment across 

4 orders of concentration.  Intensities are plotted a mean ± standard error of the mean.  

Experiments were performed in triplicate (n=3). 
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3.2.4 Antioxidants Attenuate TGFβ-Mediated Smad3 Phosphorylation 

The influence of antioxidants on the time course profile of pSmad3 expression 

levels during TGFβ stimulation was assessed using an ICW assay.  While pSmad3 levels 

following 30 minutes of TGFβ stimulation are decreased in A549 cells pre-treated with 

NAC, this snapshot in time fails to capture the kinetics of Smad3 phosphorylation in the 

presence of antioxidant perturbation.  To address this, we assessed pSmad3 levels in 

A549 cells across a time course with antioxidant co-treatment conditions in which cells 

were pre-treated with NAC (5 mM, 1 hour), GSH (5 mM, 1 hour), or catalase (0.5 mg/ml, 

18 hours).  Following TGFβ stimulation, pSmad3 levels in the control condition quickly 

rose and then plateaued (Figure 3.6).  In the presence of the antioxidants NAC, GSH, and 

catalase, pSmad3 levels failed to reach the same intensities compared to the control, had a 

delayed peak response time compared to the control, and did not maintain a sustained 

plateau of pSmad3 expression at later time points. 
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Figure 3.6  ICW pSmad3 Response to TGFβ with Antioxidant Co-Treatment. 

ICW analysis of pSmad3 levels during the course of 20 pM TGFβ treatment in A549 

cells with 1 hour pre-treatment consisting of 5 mM NAC, 5 mM GSH, or 0.5 mg/ml 

catalase (18 hour pre-treatment), which persisted as a co-treatment during the course of 

the TGFβ treatment.  Data are plotted a mean ± standard error of the mean.  Experiments 

were performed in triplicate (n=3). 
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3.2.5 Generation of a Smad3-Responsive Promoter Cell Line 

A derivative of the A549 cell line was produced via lentiviral transfection for use 

in a dual-luciferase assay.  A cell line (SBE-Luc) with Smad-Binding Element (SBE)-

driven expression of Firefly luciferase and constitutively expressed Renilla luciferase as a 

means to assess the transcriptional activity at Smad3-driven promoters.  In parallel, a 

negative control cell line (Neg-Luc) was produced using the same lentiviral constructs 

with the exception of an absence of SBE sites on the Firefly luciferase promoter.  

SBE-Luc and Neg-Luc A549 cells were plated in 96-well plates and subsequently 

treated with TGFβ for 10 hours before being prepared with luciferin and coelenterazine-

containing reaction solutions as chemiluminescent substrates for Firefly and Renilla 

luciferase enzymes, respectively.  The Firefly luciferase activity, normalized to Renilla 

luciferase activity, of SBE-Luc cells exhibits a dose-response to TGFβ treatment, with 

saturation in the 20-200 pM TGFβ conditions (Figure 3.7).  This is contrasted by the 

Neg-Luc cell line, which exhibited lower overall Firefly luciferase activity and was 

insensitive to induction by TGFβ treatment.  

3.2.6 NAC Antagonizes pSmad3-Mediated Transcription 

Smad3-mediated transcription during TGFβ signaling was measured in the 

presence of NAC using the SBE-Luc cells in a dual-luciferase assay.  TGFβ-driven 

Firefly luciferase expression after 6 hours of treatment of SBE-Luc cells was modest at 2 

pM and increased with both 20 and 200 pM conditions (Figure 3.8).  Pre-treatment of 

SBE-Luc cells with NAC for 1 hour resulted in decreased normalized Firefly luciferase 

activity in a dose-response manner across multiple doses of TGFβ. 
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Figure 3.7  TGFβ-Induced Luciferase Activity in Control & SBE Cell Lines. 

Normalized Firefly luminescence of Smad-responsive SBE-Luc and negative control 

Neg-Luc A549 cells in a dual-luciferase assay following 10 hours of TGFβ treatment.  

Normalized Firefly luminescence values are plotted as mean±standard error of the mean. 

 

 

 

 

Figure 3.8  Attenuation of TGFβ-Induced SBE Promoter Activity by NAC. 

Normalized luminescence of SBE-Luc A549 cells in a dual-luciferase assay following 6 

hours of TGFβ treatment.  NAC pre-treatment was applied 1 hour prior to TGFβ 

treatment and persisted as a co-treatment during the TGFβ treatment.  Neg-Luc cells were 

also assayed as controls.  No change in activities were measured and the conditions were 

omitted from the plot for clarity.   
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3.2.7 Antioxidants Antagonize E-Cadherin Down-Regulation 

To determine the ability of antioxidants to prevent TGFβ-mediated E-Cadherin 

down-regulation, A549 cells we plated in a 96-well plate with NAC (5 mM) and GSH (5 

mM) pre-treatment conditions 1 hour prior to treatment with 20 pM TGFβ.  After 48 

hours of treatment, untreated control, TGFβ, TGFβ+NAC, and TGFβ+GSH conditions 

were stained with anti-E-Cadherin antibody and analyzed via ICW assay (Figure 3.9).  

TGFβ-treatment alone led to decreased E-cadherin expression while pre-treatment with 

NAC or GSH prevented TGFβ-mediated down-regulation. 

3.2.8 Analysis of TGFβ-Induced EMT Using ICW 

The multi-well format used in the ICW assay enables higher-throughput analyses 

compared to conventional western blotting techniques.  This technical advantage was 

used to derive a broader multivariate understanding of response of A549 cells to TGFβ 

treatment.  Cells were plated in 96-well plates and treated with increasing doses of TGFβ, 

ranging from 0 to 200 pM, for 48 hours, after which the plates were processed in an ICW 

assay.  Each biological replicate consisted of a 96-well plate with 2 technical replicates of 

6 treatment conditions, 6 primary antibody staining conditions and 12 technical control 

wells.  Using this approach, we observed a dose-dependent down-regulation of E-

Cadherin, glutaredoxin, and catalase expression (Figure 3.10-A, E, F).  In contrast, we 

observed a dose-dependent up-regulation of β-catenin, vimentin, and pSmad3 (Figure 

3.10-B, C, D).  Differences in expression compared to untreated controls were apparent 

for many markers with 2 pM TGFβ treatment and all with 10 pM TGFβ treatment.  
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Figure 3.9  NAC & GSH Antagonize TGFβ-Mediated E-Cadherin Repression. 

ICW analysis of E-Cadherin expression in A549 cells following 48 hours of 20 pM TGFβ 

treatment compared to untreated control (grey line).  NAC (5 mM) or GSH (5 mM) 

conditions consisted of pretreatment for 1 hour followed by co-treatment for the duration 

of the 48 hour treatment course.  Statistical differnces were assessed using one-way 

ANOVA with multiple comparisons (* p < 0.05).  Data are plotted a mean ± standard 

error of the mean.  Experiments were performed in triplicate (n=3). 
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Figure 3.10  ICW Enables Multivariate Characterization of TGFβ-Mediated EMT. 

ICW analysis of A)  E-Cadherin, B) β-catenin, C)  Vimentin, D) pSmad3, E)  

Glutaredoxin, and F)  Catalase expression in A549 cells, compared to untreated control 

(grey line), following 48 hours of TGFβ treatement.  Data are plotted a mean ± standard 

error of the mean.  Experiments were performed in triplicate (n=3). 
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3.2.9 Increased CM-H2DCF-DA Oxidation Following TGFβ Treatment 

Untreated control and TGFβ-treated A549 cells were stained with 10 µM CM-

H2DCF-DA for 30 minutes and analyzed via flow cytometry (Figure 3.11).  TGFβ 

treatment increased FITC channel fluorescence compared to control.  In both control and 

TGFβ-treated conditions, the addition of H2O2 increased FITC channel fluorescence.  

 

 

 

 

Figure 3.11  CM-H2DCF-DA Fluorescence After 48 Hours of TGFβ Treatment. 

A)  Representative flow cytometric distributions of CM-H2DCF-DA fluorescence in 

A549 following 48 hours of 100 pM TGFβ treatment with and without the addition of 

100 µM H2O2.  B)  Quantification of geometric mean fluorescence intesntiy (GMFI) from 

all of the replicates.  Statistical differnces were assessed using two-way ANOVA with 

multiple comparisons (* p < 0.05).  Data are plotted as geometric mean ± 95% 

confidence interval.  Experiments were performed in triplicate (n=3). 
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3.3 Discussion 

Treatment of A549 cells with TGFβ led to a progressive induction of EMT, 

indicated by the progressive decrease in E-Cadherin and increase in mesenchymal 

markers (Figure 3.1-A, B).  These changes in phenotype are similar to previous reports of 

TGFβ-mediated EMT in A549 cells. (Kasai et al., 2005; Kim et al., 2006) Strongly 

elevated levels of pSmad2 and pSmad3 coincide with this change in phenotype (Figure 

3.1-D).  The phosphorylation of Smad3 is reported to be a critical component of TGFβ-

mediated EMT. (Borthwick et al., 2012; Boudreau et al., 2007; Ivanova et al., 2008; 

Kolosionek et al., 2009; Shan et al., 2008)  Simultaneous with EMT-defining responses 

are modifications to redox regulators, with decreasing TrxR1 (Figure 3.1-C), 

gluaredoxin-1, and catalase (Figure 3.10-E, F), antioxidant system enzymes, and 

increasing NOX4 (Figure 3.1-C), a source of ROS.  The trends in TrxR1, glutaredoxin-1, 

catalase, and NOX4 expression might suggest that the intracellular redox environment 

undergoes a modification during EMT that would favor greater production and stability 

of ROS via antioxidant down regulation.  Perturbed regulation of the redox environment 

is reflected in the increased CM-H2DCF-DA oxidation following TGFβ treatment (Figure 

3.11).  Therefore the response of A549 cells to TGFβ treatment is multifaceted, involving 

induction of EMT and modification of the redox environment at the scale of protein 

expression. 

Our findings highlight the sensitivity of TGFβ signaling via pSmad3 to inhibition 

by antioxidants in A549 cells.  A decreased, but still evident, pSmad2 and pSmad3 signal 

were present in A549 cells following treatment with NAC-treated TGFβ ligand (Figure 

3.2 & 3.3).  This indicates that NAC treatment does not completely inactivate TGFβ 
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ligand and that in the presence of NAC it is capable of activating down-stream signaling.  

Alternately, pre-treatment of A549 cells with NAC resulted in a significant decrease in 

pSmad2 and pSmad3 upon subsequent exposure to TGFβ in absence of extracellular 

NAC (Figure 3.2 & 3.3).  These findings indicate that antioxidant-mediated antagonism 

of TGFβ signaling can proceed through a cell-based mechanism.  NAC treatment of 

A549 cells does not delay but rather attenuates Smad3 phosphorylation following TGFβ 

treatment (Figure 3.6).  Additionally, NAC treatment diminishes the transcriptional 

response of a SBE-driven luciferase reporter in response to TGFβ treatment (Figure 3.8).  

The specific SBE promoter is derived from a PAI-1 promoter region, which is activated 

by pSmad3 activity. (Dennler et al., 1998; Hua et al., 1999; Stroschein et al., 1999)  

Further, treatment with the antioxidants NAC and GSH prevented TGFβ-mediated 

change in phenotype (Figure 3.9).  TGFβ-mediated induction of EMT has been shown to 

be sensitive to inhibition with NAC in cell lines other than A549 cells. (Felton et al., 

2009; Lee et al., 2010; Michaeloudes et al., 2011; Rhyu et al., 2005)  One report has 

identified the antioxidant sensitivity of EMT-induction in A549 cells.  (Zhang et al., 

2009)  Others have reported attenuation of TGFβ-mediated Smad3 phosphorylation 

following increases in cellular antioxidants. (Oh et al., 2012a; 2012b; Ryoo et al., 2014)  

Further, direct application of H2O2 has been reported to induce EMT in A549 cells. 

(Gorowiec et al., 2012)  TGFβ-mediated phosphorylation of Smad3 is also critical for the 

down-regulation of antioxidant genes.  In airway smooth muscle cells, phosphorylation of 

Smad3 was necessary for down-regulation of SOD2 and catalase (Michaeloudes et al., 

2011), while in mouse mammary cells, phosphorylation of Smad3 was necessary for the 

down-regulation of genes responsible for GSH production (Bakin et al., 2005)  Thus, 
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TGFβ signaling in A549 is redox regulated on the scale of signal transduction and protein 

phosphorylation.  Therefore, TGFβ-mediated EMT and down-regulation of antioxidants 

relies on transcriptional activity of pSmad3, which exhibits diminished activation in the 

presence of antioxidants. 

EMT is a highly complex process that encompasses numerous cellular systems.  

Some studies have linked changes in the redox environment to induction of EMT 

(Gorowiec et al., 2012; Vyas-Read et al., 2014), while others have linked induction of 

EMT to changes in the redox environment. (Lee et al., 2010; Michaeloudes et al., 2011; 

Rhyu et al., 2005)  Likewise, the A549 cell line has been used extensively for studies of 

perturbed redox regulation and for studies of transdifferentiation; however, there is an 

absence of investigations into the possibility that TGFβ-mediated induction of EMT and 

remodeling of the redox environment may be interrelated within a singular experimental 

model.  A particular challenge to this is the multivariate nature of such studies.  We have 

addressed this issue though the implementation of ICW assays to measure the expression 

of antioxidant proteins in parallel with markers of epithelial and mesenchymal phenotype 

(Figure 3.10).  Our results demonstrate that redox regulation during TGFβ-mediated 

EMT in A549 cells occurs at multiple scales where TGFβ signaling is inhibited by 

intracellular antioxidants and initiates the down-regulation of antioxidant expression.  

This relationship can be interpreted as a double-negative feedback loop (Figure 3.12).  

Cellular systems possessing double-negative feedback loops can exhibit bistability, which 

can function to lock cells into a specific phenotype. 
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Figure 3.12  Schematic of Multiscale Redox Regulation During TGFβ Signaling. 

A schematic of the redox regulatory relationships observed during TGFβ-mediated EMT 

that may be responsible for maintaining A549 in bistable epithelial (A) or mesenchymal 

(B) states.  A)  Under unstimulated conditions, E-Cadherin and antioxidant expression is 

un-repressed and N-Cadherin expression is un-stimulated.  B)  Upon the addition of 

TGFβ, Smad3 is phosphorylated, which drives repression of E-Cadherin and antioxidants 

while stimulating N-Cadherin expression.  Down-regulation of antioxidants allows 

elevation of ROS and enhancement of Smad3 phosphorylation. 
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3.4 Conclusions 

Cellular phenotypes are often ascribed a particular state, i.e. “epithelial” or 

“mesenchymal”; however, our results demonstrate the simplicity in using this 

perspective.  In addition to a cadherin switch following TGFβ treatment, multiple cellular 

programs are sensitive to regulation in the presence of TGFβ.  Parallel investigation of 

numerous molecular species, which define various dimensions of phenotype, is a 

technical challenge.  We address this through the implementation of ICW assays, which 

enable higher throughput compared to conventional western blotting approaches.  Such 

approaches are critical for multivariate investigations, such as the investigation of redox 

regulation in the context of EMT.  Temporal studies expand the technical demand of an 

investigation as the volume of data collection expands significantly with each 

intermediate time point studied.  We have identified multiscale redox regulation within 

the same experimental model in which cellular antioxidants attenuated TGFβ signaling 

and TGFβ signaling resulted in decreased antioxidant expression.  Investigation of the 

temporal inter-relationship between 1) antioxidant sensitive TGFβ-mediated signaling 

and 2)  TGFβ-mediated regulation of the redox environment as possible mechanism of 

bistability in epithelial or mesenchymal phenotype states presents a significant technical 

challenge in terms of experimental scope and analysis.  To address this challenge, we 

have developed tools that will enable the investigation of TGFβ-mediated EMT from a 

higher-dimensional perspective. 
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3.5 Materials & Methods 

3.5.1 Cell Culture & Treatments 

A549 lung carcinoma cells were obtained from American Type Culture Collection 

(ATCC; CCL-185) and maintained in high glucose DMEM with L-glutamine (Sigma 

D5796), 10% FBS (Sigma F4135) and penicillin (50 IU/ml)-streptomycin (50 µg/ml) 

(Cellgro 30-001-CI).  Cells were plated in T-75 flasks at density of 4,000 cells per cm
2
 in 

15 ml growth media and maintained at 37˚C and supplemented with 5% CO2.  Cells were 

plated in 96-well plates at a density of 5,000 cells per well and maintained in 200 µl of 

growth media.  Treatments consisted of TGFβ (Millipore, GF111), NAC (Sigma-Aldrich, 

A9165), GSH (VWR, A18014-06), and catalase (Sigma-Aldrich, C9322). 

3.5.2 Western Blotting 

Following treatment, cellular lysates were prepared with a lysis buffer that 

consisted of 50 mM TrisHCl pH 7.5, 150 mM NaCl, 2 mM EGTA, 10 mM NaPP, 30 mM 

NaF, 2% Triton X-100, 1 mM benzamidine, 1 mM β-glycerophosphate, 100 µM sodium 

orthovanadate, 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 10 µg/ml 

aprotinin, 10 µg/ml leupeptin, 1 µg/ml pepstatin, and 1 µg/ml microcystin.  Lysate 

protein concentrations were determined via BCA assay and diluted to uniform 

concentration with lysis buffer.  Lysates were prepared for SDS-PAGE in 4x Laemmli 

reducing sample buffer (Boston Bioproducts BP-110R) and loaded at a rate of 20 µg per 

well for sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).  

Electrophoresis of cellular proteins was run at a constant voltage of 130V for 1 hour and 

transferred to PVDF membranes at 100V for one hour.  The PVDF membranes were then 

blocked for one hour in the appropriate blocking buffer (Rockland blocking or non-fat 
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milk (NFM) buffer).  Following blocking, the PVDF membranes were incubated with the 

diluted primary antibody overnight at +4˚C with gentle rotation in blocking buffer with 

0.1% Tween-20.  Primary antibody solutions consisted of the desired target for the blot 

plus anti-α-tubulin, to serve as a loading control.  Solutions were prepared as indicate in 

Table 3.1.  Following overnight incubation with the primary antibody, membranes were 

washed four times with TBS-T for 5 minutes at ambient temperature with gentle rotation.  

Membranes were then incubated with the secondary antibodies (1:20,000) in Rockland 

blocking buffer with 0.1% Tween-20 and 0.01% SDS for 1 hour at ambient temperature 

with gentle rotation.  Secondary antibodies were purchased from LI-COR Biosciences 

targeting mouse and rabbit primary antibodies (IRDye® 680LT Conjugated Donkey 

Anti-Mouse IgG and IRDye® 800CW Donkey Anti-Rabbit IgG).  The membranes were 

washed 3 times with TBS-T and 2 times with TBS for 5 minutes at ambient temperature 

with gentle rotation and stored in TBS for imaging.  PVDF membranes were imaged on a 

LiCor Odyssey imaging system.  The blots were analyzed with LiCor Image Studio 

(v2.1.10). 
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Table 3.1  Western Blotting Primary Antibody Conditions. 

Primary antibodies were prepared in the indicated blocking buffer (BB) and dilution and 

allowed to incubate with the PVDF membranes overnight at +4˚C before staining with 

secondary antibody and imaging on a LiCor Odessey. (CS = Cell Signaling, M = 

Millipore, E = Epitomics, a = abcam) 

Target Vendor Clone Product No. Dilution BB 

E-cadherin CS 24E10 3195 1:1000 Rockland 

Claudin-1 CS Polyclonal 4933 1:1000 Rockland 

N-cadherin CS Polyclonal 4061 1:1000 Rockland 

Vimentin CS D21H3 5741 1:2000 Rockland 

Snail CS C15D3 3879 1:1000 Rockland 

β-catenin CS 6B3 9582 1:1000 Rockland 

α-Smooth Muscle Actin a Polyclonal ab5694 1:200 Rockland 

Thioredoxin Reductase 1 M Polyclonal 07-613 1:1000 Rockland 

NADPH Oxidase 4 E UOTR1B492 3187-1 1:2000 Rockland 

p-Smad2 CS 138D4 3108 1:1000 5% NFM 

p-Smad3 a EP823Y ab52903 1:2000 Rockland 

α-Tubulin a DM1A ab7291 1:10,000 Both 
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3.5.3 Lentiviral Transfection 

A549 cell lines were generated for use in a dual-luciferase assay.  Cells were 

passaged into wells of a 96-well plate at a density of 20,000 per well.  A transfection 

solution containing Lipofectamine 2000 Transfection Reagent (Life Technologies 

#11668) and free of antibiotics was then added to the wells and incubated for 24 hours at 

37˚C.  A Smad-Binding Element-responsive cell line was generated using Smad Reporter 

(Qiagen SA Biosciences CLS-017L) and Renilla Control (Qiagen SA Biosciences CLS-

RHL) lentiviral particles.  A negative control cell line was generated using Negative 

Control (Qiagen SA Biosciences CLS-NCL) and Renilla Control (Qiagen SA Biosciences 

CLS-RHL) lentiviral particles.  Multiplicity of infection (MOI) for transfection of A549 

cells with a lentivirus has been reported ranging from 5 MOI (Song et al., 2006) to 30 

MOI (Nan et al., 2011).  For both lentiviral particles used to generate each cell line, a 

MOI of 25 was used.  On the following day, the transfection media was replaced with 

fresh growth media.  Fourty-eight hours after transfection, growth media was replaced 

with selection media consisting of growth media supplemented with 1.5 µg/ml 

puromycin and 100 µg/ml hygromycin.  Transfected cells were maintained in selection 

media for 7 days before being assessed in a dual-luciferase assay. 

3.5.4 Dual-Luciferase Assay 

The luciferase activity of Firefly and Renilla luciferase enzymes were measured 

using the Promega Dual-Luciferase Reporter Assay System (E1910).  SBE-Luc and Neg-

Luc A549 cells were plated in 96-well plates at 5,000 cells per well and expanded for two 

days before application of a TGFβ treatment.  Following treatment, media was washed 

from the wells, which were washed with sterile 1x PBS.  Wells were then incubated with 
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20 µl of passive lysis buffer (PLB) on a shaker for 20 minutes at ambient temperature.  

The 96-well plate was then placed in a BioTek Synergy 4 plate reader where, well-by-

well, 100 µl of LAR II reagent solution was added to each well, shook for 2 seconds, and 

followed by 10 seconds of integrated measurement of Firefly bioluminescence.  Next, the 

Renilla bioluminescence was measured by the addition of 100 µl of Stop & Glo reagent 

solution to the well, followed by 20 seconds of shaking, and finally 10 seconds of 

integrated bioluminescence measurement.  For each well, the Firefly bioluminescence 

was normalized to the Renilla bioluminescence. 

3.5.5 In-Cell Western Assay 

Following treatment, cells were washed with PBS with Ca
2+

/Mg
2+

 and fixed with 

100 µl 4% paraformaldehyde per well for 20 minutes at ambient temperature.  The cells 

were permeabilized by washing five times with 50 µl 0.1% Triton X-100 solution for 5 

min with gentle rotation at ambient temperature.  The plates were blocked with 100 µl of 

blocking buffer consisting of 0.5x Rockland Blocking Buffer for Fluorescent Western 

Blotting (MB-070) in tris-buffered saline (TBS) for 1.5 hours with gentle rocking at 

ambient temperature.  Following blocking, cells were immunostained with 35 µl of 1˚ 

antibody solutions (Table 3.2) overnight at +4˚C with gentle rotation in blocking buffer 

supplemented with 0.1% Tween-20.  The plates were then washed five times with TBS-T 

(TBS with 0.1% Tween-20) under gentle rotation at ambient temperature for 5 minutes 

each.  Plates were stained with 45 µl Donkey anti-Rabbit antibody (1:800; LiCor, IRDye 

800CW, 926-32213) and CellTag 700 (0.2 µM; LiCor, 926-41090) in blocking buffer 

supplemented with 0.2% Tween-20 for 1.5 hours.  The plates were washed four times 

with TBS-T and once with TBS before being emptied and sealed for imaging.  Signal 
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intensities in the 700 nm and 800 nm channels were measured on stained plates via LiCor 

Odyssey system and analyzed in LiCor Image Studio (v2.1.10).  

The background signal intensity of non-specific secondary binding was subtracted 

based on the amount of cells present in a given well.  For a given well, non-specific 

secondary antibody background staining (800background) was subtracted from the raw 800 

channel intensity (800raw) to yield the 800 channel signal (800signal) intensity.  Each plate 

included a set of 8-12 wells lacking any primary antibody staining and containing at least 

one sample from each biological condition.  On a given plate, the intensity of the non-

specific secondary antibody signal was determined to be a function of the amount of cells 

present (Figure 3.13).  The unstained wells were used to create a liner curve of 

background signal intensity as function of loading control signal intensity.  Raw signal 

intensities of primary antibody stained cells were augmented by background subtraction 

(800signal=800raw-800background), where the raw signal intensity was reduced by the 

background signal intensity, as determined by loading control signal intensity.  The 

loading control normalized signal intensity was determined by dividing 800signal by the 

700 channel signal intensity.  To normalize individual signals across plates, the loading 

control normalized signal intensity was divided by the average loading control 

normalized signal intensity of the control condition from all of the plates (untreated A549 

cells). 
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Figure 3.13  Representative ICW Background Staining Standard Curve. 

The secondary antibody signal (800 channel) is plotted against the loading control DNA 

stain (700 channel). 

 

 

 

 

 

 

 

Table 3.2  Primary Antibody Conditions for ICW Staining 

Target Vendor Clone Product No. Dilution 

E-cadherin Cell Signaling 24E10 3195 1:400 

Vimentin Cell Signaling D21H3 5741 1:200 

β-catenin Cell Signaling 6B3 9582 1:200 

p-Smad3 abcam EP823Y ab52903 1:400 

Glutaredoxin-1 abcam Polyclonal ab45953 1:500 

Catalase Cell Signaling D4P7B 12980 1:800 
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3.5.6 CM-H2DCF-DA Fluorescence Assay 

Following treatment, cells were trypsinized (CellGro, 25-053-CI) and 

resuspended in HBSS without phenol red (Thermo Scientific HyClone, SH30268) at a 

working concentration of 5x10
5
 cells/ml and incubated with 10 µM CM-H2DCF-DA 

(Invitrogen, C6827) for 30 minutes.  Co-treatment with H2O2 (100 µM) occurred during 

the final 15 minutes of the CM-H2DCF-DA incubation.  The cells were then washed and 

co-stained with SYTOX Blue (Invitrogen, S34857, 1:1000) for live/dead discrimination.  

A BD LSR II flow cytometer was used to resolve SYTOX Blue (λex=445, λem=473/10) 

and CM-H2DCF-DA (λex=488, λem=530/30) signals.  Cells were gated by FSC/SSC to 

exclude cellular debris, then by FSC-A/FSC-H to exclude non-singular events, and 

finally by absence of SYTOX Blue staining, to exclude all non-viable cells.  CM-H2DCF-

DA signals were then characterized by their geometric mean fluorescence intensity. 
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CHAPTER 4  REDOX PROCESSES INFORM MULTIVARIATE 

TRANSDIFFERENTIATION TRAJECTORIES ASSOCIATED 

WITH TGFβ-INDUCTED EMT 

 

 

4.1 Introduction 

More than seven decades since Waddington first introduced the concept of 

canalization, systems biology is still very focused on how to best characterize phenotype 

robustness, in which small perturbations from a developmental trajectory are protected 

against by a steep energetic landscape of descent towards a terminal state (Waddington, 

1942).  In the modern era, however, biological insight into the reversibility of 

differentiation processes through transdifferentiation and the reacquisition of 

pluripotency have expanded our view of how cells behave dynamically as they progress 

from one phenotype to another.  The ability to measure many biomarkers in combination 

allows contemporary researchers to interrogate how cellular trajectories during 

transdifferentiation are driven or reinforced by various cellular programs.  In particular, 

the influences of genetic reprogramming of a cellular state, such as redox potential, and 

external influences on this state can be investigated in parallel with traditional phenotype 

markers to ask how cellular oxidation influences the progression from one cell type 

towards another. 

One such transdifferentiation process, epithelial-mesenchymal transition (EMT), 

occurs when epithelial cells loose certain phenotypic qualities (such as apical-basal 
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polarity and basement membrane interaction) and acquire mesenchymal characteristics 

(such as cell migration and production of extracellular matrix components) (Kalluri and 

Weinberg, 2009).  The cytokine transforming growth factor beta (TGFβ) induces EMT 

and has been implicated in increased invasiveness of cancers and in the formation of 

metastases (Hanahan and Weinberg, 2011; Oft et al., 1998; Thiery et al., 2009).  TGFβ 

signaling is enhanced within the tumor microenvironment through interactions with 

cancer-associated fibroblasts, immune cells, and extracellular matrix (Bierie and Moses, 

2006; Junk et al., 2013).  Circulating tumor cells from breast cancer patients are enriched 

for mesenchymal markers and TGFβ signaling, implicating TGFβ-mediated EMT as a 

mechanism for entry into to the circulatory system (Yu et al., 2013).  Upon reentry into 

distant tissues, reversal of the mesenchymal-like phenotype into an epithelial phenotype 

(i.e.  MET), may play a critical role in the establishment and progression of metastases 

(Hugo et al., 2007).  A recent investigation of ovarian cancer, stratification of tumor 

phenotypes into epithelial, intermediate epithelial, intermediate mesenchymal, and 

mesenchymal states found increased 5-year progression-free survival in patients whose 

tumors were classified as epithelial or intermediate epithelial.  Furthermore, of 43 

classified cell lines, intermediate states were found to be more responsive to kinase 

inhibition (Huang et al., 2013); thus, the timing of phenotype transition dynamics or 

characterization of intermediate phenotype states may have major implications for 

therapeutic strategies. 

Numerous gene expression changes are initiated by TGFβ signaling as part of 

EMT.  Upon binding of its cognate receptor, TGFβ quickly activates canonical and non-

canonical signaling.  Canonical signaling occurs through phosphorylation of Smad2 and 
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Smad3 transcription factors, which bind Smad4 before translocation into the nucleus (Liu 

et al., 1997; Souchelnytskyi, 1997).  Smad3 phosphorylation and its transcriptional 

activity are critical steps in TGFβ-mediated EMT (Dzwonek et al., 2009; Katsuno et al., 

2013).  Smads have been linked to a number of critical steps involved in the formation of 

metastases.  In one study, the formation of bone metastases by xenografted cancer cells 

relied on Smad4 (Kang et al., 2005).  In another, in vitro and in vivo metastatic processes 

were dependent on Smad3 and enhanced upon Smad2 knockdown (Petersen et al., 2010), 

while, in yet another study, Smad2 elevation enhanced in vitro and in vivo pro-metastatic 

processes (Oft et al., 2002).  Thus, the pro-carcinogenic mechanisms of TGFβ rely on 

Smad signaling to carryout transcriptional remodeling, though in ways that may be 

cancer or cell-type specific. 

In addition to induction of EMT, TGFβ can transform the regulation of the 

intracellular redox environment through a variety of mechanisms, such as the up-

regulation of NADPH oxidase 4 (NOX4), which constitutively produces hydrogen 

peroxide (H2O2) (Nisimoto et al., 2010; Serrander et al., 2007), increasing free 

intracellular iron, and the down-regulation of glutaredoxin-1 or reduced glutathione 

(GSH) levels (Arsalane et al., 1997; Boudreau et al., 2012; Felton et al., 2009; Hecker et 

al., 2009; Lee et al., 2010; Peltoniemi et al., 2004; Zhang et al., 2009).  The state of 

reduction equivalent capacity, capable of eliminating electrophiles such as ROS, has been 

defined as the nucleophilic tone of the cell and is determined by the expression of 

antioxidant system components. (Forman et al., 2014)  As such, decreased nucleophilic 

tone would impair the cell’s ability to clear ROS.  Elevation of reactive oxygen species 

(ROS) during EMT can lead to direct activation or enhancement of a variety of redox 
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sensitive signal transduction pathways (Cannito et al., 2010) and H2O2 treatment itself 

has been shown to induce EMT in a TGFβ-dependent manner (Gorowiec et al., 2012).  

Antioxidant attenuation of Smad2/3 phosphorylation and transcription has been observed 

in a variety of cell types (Cucoranu et al., 2005; Fatma et al., 2009; Meurer et al., 2005; 

Michaeloudes et al., 2011; Ono et al., 2009) and is attributed to the prevention of TGFβ-

mediated EMT (Felton et al., 2009; Lee et al., 2010; Michaeloudes et al., 2011; Rhyu et 

al., 2005; Zhang et al., 2009).  Thus TGFβ signaling has both the capacity to modify the 

redox environment and also be subject itself to regulation by the redox environment. 

Despite extensive studies devoted to the contribution of cellular oxidation on 

many individual biochemical processes involved in TGFβ-induced EMT, inclusion of 

redox markers in the characterization of the multivariate phenotype trajectory has never 

been performed in a systematic manner.  We hypothesized that the previously reported 

cellular oxidation during TGFβ-mediated EMT (Boudreau et al., 2012; Lee et al., 2010) 

reinforce TGFβ signaling in a feed-forward manner during EMT as well as contribute to 

maintenance of mesenchymal differentiation following EMT.  Investigation of the 

aforementioned processes is fraught with the complexity arising from studying a 

transition that involves evaluating epithelial, mesenchymal, Smad signaling, and redox 

regulatory phenotypic characteristics as they evolve over time.  To address the numerous 

interconnected regulators in this biological system, we developed a custom panel of 

markers for a multiwell in-cell western (ICW) assay (Stockwell et al., 1999) that could 

generate time-dependent samples for numerous epithelial, mesenchymal, TGFβ-specific, 

and redox markers.  This data was compiled with other available information for 

multivariate modeling, specifically principal component analysis (PCA), to collapse 
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features of high-dimension, temporal dynamics during EMT into latent variable space.  

This novel experimental and analytical approach allowed us to investigate whether 

cellular redox features are informative metrics of EMT transdifferentiation in A549 lung 

carcinoma cells.  Using PCA we extracted a multivariate description of phenotype during 

the time course of EMT that was capable of interrogating how the cellular redox state 

may influence and relate to transdifferentiation between epithelial and mesenchymal 

states.  
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4.2 Results 

4.2.1 Visualization of EMT Phenotype Transdifferentiation Trajectories 

Response of A549 cells to TGFβ treatment has been studied extensively; within 

12 hours of treatment more than 2000 genes exhibit differential expression (Ranganathan 

et al., 2007) while down-regulation of E-cadherin and up-regulation of mesenchymal 

proteins is apparent by 24 hours (Kasai et al., 2005; Kim et al., 2007).  To characterize 

multivariate phenotype states during the time course of EMT, we measured the 

expression of 8 proteins, spanning epithelial, mesenchymal, and Smad species, following 

a 200 pM bolus addition of TGFβ.  In-cell western (ICW) assays (Stockwell et al., 1999) 

produce similar data as conventional western blotting but are more proficient in several 

ways, including increased precision and higher throughput (Aguilar et al., 2010).  

We observed decreased E-cadherin and increased αSMA, vimentin, and β-catenin 

expression (Figure 4.1-A), similar to our previous western blot data (Figure 3.1).  

However, the ICW assay yielded high precision results, reflected in the low experimental 

error.  Individual Smad species displayed distinct expression profiles during treatment 

(Figure 4.1-B).  Smad2 expression remained relatively constant up to 72 hours before 

sharply increasing.  Smad3 displayed a biphasic response, initially increasing 1.4-fold 

before decreasing 12 hours post-treatment.  Smad4 levels were suppressed from 30 

minutes through 8 hours before increasing expression at later times.  Phosphorylation of 

Smad3 occurred within minutes of addition of TGFβ and remained sustained up to a 12-

hour window (Figure 4.1-C). 
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Figure 4.1  ICW Analysis of Protein Dynamics During TGFβ-Mediated EMT. 

A)  Down-regulation of E-Cadherin is apparent at later time points, as is the up-

regulation of mesenchymal markers αSMA, vimentin, and β-catenin.  B)  The dynamic 

profile of each Smad transcription factor is unique.  C)  Smad3 is quickly phosphorylated 

upon the addition of TGFβ and remains elevated until the later time points.  Normalized 

fluorescence values were analyzed using two-way ANOVA (p=0.05) with Dunnett’s 

multiple comparisons test.  The values that differ significantly from the zero time point 

are enclosed within the shaded regions.  Data are the result of 3 independent biological 

replicates (n=3) and were plotted as mean fold-change ± standard error of the mean. 
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Multivariate analysis enables the visualization of covariance among multiple 

variables, such as phenotypic markers (Janes and Yaffe, 2006).  We hypothesized that the 

aspects of differential dynamics displayed by Smad2 and Smad3 would be discernable 

using a multivariate modeling approach to characterize cellular phenotype during EMT.  

We sought to demonstrate the utility of pairing ICW data collection with PCA for 

multivariate characterization and analysis of phenotype dynamics during EMT.  A major 

strength of PCA is that it simplifies large data sets by distilling high-dimensional data 

into principal components (PCs), which are latent variables, composed of a linear 

combination of response variables.  The output of the model is a set of reduced-

dimension PCs, which are composites of weighted response variables that exhibit similar 

“behavior”, as well as a mapping of model observations according to how they align, or 

project, along the nascent PCs. 

In the Scores plot (Figure 4.2-A), which projects observations in latent variable 

space, we observed a clearly demarcated progression of time points starting in the lower 

right-hand quadrant and running counter clockwise into the lower left-hand quadrant.  

The counterclockwise trajectory of observations in the Scores plot moves along PC2 (up) 

before moving along both PC2 (down) and PC1 (left) at later time points (24+ hours); 

therefore we interpret PC1 as differentiating later time points from early or intermediate 

ones. 

Contributions of each protein to the formation of PCs and their relationships to 

each other were characterized in the Loading plot (Figure 4.2-B).  E-cadherin had a 

relatively large weighting on PC1 but essentially none along PC2, indicating that E-

cadherin contributed to the overall data variance captured by PC1 but very little by PC2.  
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Smad4 loading, opposite E-cadherin, indicated an anticorrelated response profile to E-

cadherin. Figure 4.1-A,B suggests both E-cadherin and Smad4 were largely constant 

during the early time points before diverging at later time points.  In this sense, their 

responses “behaved” similarly, contributing to the same PC, though with opposite signed 

weighting to account for their opposing nature (Figure 4.2-B). 

The Biplot (Figure 4.2-C) superimposes observation data from the Scores plot and 

variable data from the Loading plot scaled by their correlation along the PCs.  This serves 

as a tool to associate the relationships between variables and observations.  Since all of 

the response variables, according to loading weights, contributed to the PCs, phenotype 

trajectories represent dynamic responses of numerous proteins.  Close proximity of 

variables to observations indicates that high expression of the variables aids in 

differentiating those observations from the others.  EMT was apparent by the 

anticorrelation between E-cadherin and mesenchymal markers while the anticorrelation 

between Smad3/pSmad3 and Smad2/Smad4 was aligned differently within latent variable 

space, capturing the difference in regulatory time scales.  In this manner, the time course 

of EMT is resolved, according to multivariate phenotypic profiles, through 

superimposition of variables and time points within latent variable space. 
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Figure 4.2  Multivariate Phenotype Dynamics During TGFβ-Mediated EMT. 

Dimensional reduction through PCA modeling of ICW data resolves the relationships 

between response variables and the EMT time course.  A possible 9 variables (8 proteins 

+ time) are distilled into 2 PCs, or latent variables, composed of protein expression 

variables.  A)  Plots of the observation scores, from three technical replicates, trace a 

trajectory of phenotypic variation in multivariate space during EMT.  The time points are 

resolved along a counter-clockwise path.  B)  Variable contributions to the formation of 

PCs are depicted by their loading weight along the PC axes, i.e. the coordinates (p1, p2) 

where p1 is the weight along PC1.  Co-localized variables are more covariant while 

variables bisected by 0 along a PC are anticorrelated with respect to that PC.  Some 

variables exhibit simple anticorrelation, E-Cadherin with Smad4, while others are 

contextually anticorrelated, e.g. β-catenin with Smad3 along PC1 but not PC2.  C)  The 

biplot contains both scores and loading data, scaled by their correlation along the PCs, 

enabling the analysis of relationships between response dynamics and the EMT time 

course. 16 and 96 hour samples are differentiated by a down-regulation of Smad3 and 

pSmad3 paired with up-regulation of Smad2 and Smad4 over time. 

  



www.manaraa.com

 61 

4.2.2 Reciprocal Regulation of Antioxidants & NOX4 During EMT 

Numerous studies have examined TGFβ-induced perturbation of isolated 

components involved in redox regulation, yet these studies neglect the complexity of the 

redox environment, which encompasses numerous reactive species and is subject to 

regulation by a variety of production and clearance mechanisms.  The collective response 

of redox regulators has not been characterized.  Using qRT-PCR, we examined an 

extensive array of antioxidant and pro-oxidant modulators of the redox environment 

following 48 hours of TGFβ treatment.  The response of antioxidant and pro-oxidant 

genes were not uniform, with some increasing and some decreasing in each category 

(Figure 4.3).  Numerous antioxidant enzymes, representing distinct antioxidant 

mechanisms, were down-regulated, while NOX4, was up-regulated by 50-fold. 
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Figure 4.3  Volcano Plot of Anti- & Pro-Oxidant Gene Modulation by TGFβ.  

A549 cells were treated with 200 pM TGFβ for 48 hours, after which the expression of 

antioxidant and pro-oxidant genes were compared against untreated controls via qRT-

PCR.  Genes demonstrating a greater than 2-fold change in expression and a p value less 

than 0.05 are labeled with the gene name.  A comprehensive overview of the PCR array 

results are depicted in Figure A.1.  P values were determined by two-way ANOVA with 

multiple comparisons and the fold-change plotted as the mean ± standard error of the 

mean.  Data are the result of 3 independent biological replicates (n=3). 
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4.2.3 Anticorrelation of Antioxidants with Mesenchymal Phenotype 

The data in Figure 4.3 represents a single point in time and the temporal 

relationship of the enzyme responses with respect to one another and to EMT are unclear.  

For example, the data does not distinguish between coordinated regulation, which would 

enable relative relationships in redox compartmentalization to be maintained, versus 

staggered dynamics, which would focus the pro-oxidant shift to particular redox couples 

or cellular compartments.  In a previous study of TGFβ-mediated EMT in A549 cells by 

Keshamouni et al., Affymetrix microarrays and quantitative mass spectrometry were used 

to identify a very high degree of concordance between transcript and protein expression 

over a 3-day time course (Keshamouni and Schiemann, 2009).  Using this dataset, we 

selected transcripts that were known to be differentiation markers, previously studied in 

TGFβ-induced EMT of A549 cells, or investigated elsewhere in this study.  The changes 

in gene expression measured by PCR (Figure 4.3) were found to be correlated with those 

measured by Keshamouni et al. (Figure A.3).  Microarray transcript expression was 

analyzed by PCA to characterize the transcription dynamics of epithelial, mesenchymal, 

Smad, and redox species. 

Similar to the ICW plot in Figure 4.2-A, the Scores plot of the microarray PCA 

yielded a rotational phenotype trajectory through the four quadrants (Figure 4.4-A).  The 

variable relationships observed are evenly distributed across latent variable space (Figure 

4.4-B); however, PC1 captures the vast majority of model variance and is responsible for 

differentiating early from late observations as they progress from right to left within 

latent variable space while PC2 differentiates early/late from intermediate time points 
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(Figure 4.4-C).  The combination of PC1 and PC2 enables resolution of the full time 

course. 

Closer inspection of the Loadings plot revealed both expected and unexpected 

results.  High antioxidant expression at early time points (Figure 4.4-B; purple diamonds) 

was anticorrelated with high mesenchymal marker expression at late time points (red 

triangles).  NOX4 expression correlated with mesenchymal markers.  Surprisingly 

epithelial markers (blue circles) did not covary during EMT; however, E-cadherin 

(CDH1) did covary with antioxidants and anticorrelate with mesenchymal markers.  

Notably, antioxidants and mesenchymal markers were distributed along both sides of 

PC2. 
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Figure 4.4  Antioxidant/mesenchymal anticorrelation during EMT. 

PCA modeling of transcript expression during the time course of EMT, from the study by 

Keshamouni et al. (Keshamouni and Schiemann, 2009), displays the transition of 

phenotype states over time.  A)  Observation scores trajectories from three technical 

replicates progress in a clock-wise manner from 0 to 72 hours of treatment.  B)  The 

model was populated by variables commonly used to define epithelial or mesenchymal 

differentiation as well as those pertinent to redox regulation and Smad transcription 

factors.  The anticorrelation of antioxidants (purple diamonds) with mesenchymal 

markers (red triangles) is prominent along PC1.  C)  The biplot, incorporating 

information from both the scores (A) and loading (B) plots, relating the variables that 

define the phenotype with the time course on which they change.  The path of the 

phenotype trajectory, predominantly along PC1, demonstrates that PC1 explains the 

majority of the model variance.  The antioxidant/mesenchymal anticorrelation is a major 

contributor to explaining differentiation between untreated and EMT-transformed cells. 
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4.2.4 TGFβ Treatment Decreases Ducleophilic Tone 

Covariance of antioxidant enzymes with epithelial markers and NOX4 with 

mesenchymal markers suggests that remodeling of the intracellular redox processes 

occurs over longer time scales, on the order of days.  However, remodeling at the 

transcriptional level does not necessarily ensure that functional remodeling of the 

intracellular redox environment will ensue.  To further investigate intracellular redox 

processes, we incubated TGFβ-treated A549 cells with the oxidation-activated 

fluorescein dye CM-H2DCF-DA.  Three days of TGFβ-treatment led to increased CM-

H2DCF-DA fluorescence (solid circles), which was enhanced in the presence of H2O2 

(open squares; Figure 4.5-A).  Furthermore, pre-incubation with antioxidants NAC and 

catalase resulted in decreased CM-H2DCF-DA fluorescence, matching levels of the 

untreated control (Figure 4.5-B).  In a time course study, mirroring the ICW analysis, 

significant increases in fluorescence of 2, 3.5, and 5-fold were observed at 48, 72, and 96 

hour treated conditions compared to untreated controls (Figure 4.5-C), indicating 

enhanced rates of CM-H2DCF-DA oxidation in cells with more prolonged exposure to 

TGFβ.  
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Figure 4.5  ROS Contribute to H2DCF-DA Oxidation During TGFβ-Mediated EMT. 

A)  Flow cytometric analysis of CM-H2DCF-DA (10 µM, 30 min) fluorescence in 

untreated and 200 pM TGFβ-treated A549 cells (solid circles) as well as with their 

counterparts receiving H2O2 co-administration (250 µM, 15 min; open squares).  Samples 

with respective significant differences are demarcated (*).  B)  CM-H2DCF-DA 

fluorescence following 1 hour pre-incubation with antioxidants NAC or catalase.  

Samples differing significantly from the 3-day TGFβ treated condition are enclosed 

within the shaded region.  C)  CM-H2DCF-DA fluorescence time course during EMT 

measured by plate assay.  Time points differing significantly from the untreated control 

(0 hours) are enclosed within the shaded region.  All data are the result of 3 independent 

biological replicates (n=3) and plotted as the geometric mean ± standard error of the 

mean.  Significance was determined by one-way ANOVA (p=0.05). 
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Owing to pronounced down-regulation of numerous antioxidant enzymes, we 

hypothesized that TGFβ-treated cells will exhibit a decreased rate of H2O2 clearance from 

the extracellular environment.  Following a bolus addition of 20 µM H2O2, we measured 

the persistence of extracellular H2O2 using a luminol/sodium hypochlorite assay over a 60 

minute time course (Figure 4.6-A).  The extracellular H2O2 concentration decreased over 

time and was used to calculate a relative rate of H2O2 clearance from the media.  The 

H2O2 degradation rate (kdeg) was found to be decreased in TGFβ treated cells to ~3/4 the 

rate of untreated controls (Figure 4.6-B).  

Numerous regulators of GSH metabolism were among the antioxidant enzymes 

down-regulated following TGFβ treatment (Figure 4.3 & 4.4).  Among them, glutamate-

cysteine ligase catalytic subunit (GCLC) and glutamate-cysteine ligase regulatory subunit 

(GCLM) regulate GSH production, while glutathione reductase (GSR) mediates reduction 

of GSSG. (Lu, 2013) Therefore, we hypothesized that intracellular glutathione redox 

potential would become more oxidized.  Calculation of the GSSG/2GSH redox potential 

necessitates knowledge of the absolute concentrations of GSH and GSSG. (Schafer and 

Buettner, 2001) Vi-Cell XR analysis revealed a 1% reduction in viability (Figure A.5 A), 

no significant difference in circularity (Figure A.5-B), and a 1.1 µm decrease in cell 

diameter (Figure A.5-C) in 96-hour TGFβ treated cells compared to untreated control.  

Cell volumes were computed from the cell diameters (Figure A.5-D) and used to 

determine intracellular concentrations of GSH and GSSG.  Intracellular GSH and GSSG 

concentrations were measured following 0, 48 and 96 hours of TGFβ treatment and used 

to calculate the half-cell reduction potential, or redox potential, (EGSH) of the 
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GSSG/2GSH redox couple, which was observed to increase +6.8 mV (p < 0.05) 

following 96 hours of TGFβ treatment (Figure 4.6-C). 

 

 

 

 

 

 

Figure 4.6  TGFβ Treatment Decreases Nucleophilic Tone. 

A)  Exogenous H2O2 was administered to cells in a 96-well plate and the H2O2 remaining 

in the media was measured at serial time points to determine the rate of H2O2 degradation 

(kdeg).  B)  Following TGFβ treatment (200 pM), the relative rate of H2O2 degradation 

from the media (kdeg) was measured with relative to the untreated control.  C)  The GSH 

and GSSG content of A549 cells were measured after multiple days of TGFβ treatment 

and used to calculate the half-cell reduction potential, or redox potential (EGSH), of the 

GSSG/2GSH redox couple.  Data are the result of 3 independent biological replicates 

(n=3) and plotted as mean ± standard error of the mean.  Time points differing 

significantly from the untreated control, as determined by one-way ANOVA (p=0.05), 

are enclosed within the shaded regions. 
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4.2.5 Loss of Nucleophilic Tone Coincides with EMT 

We further investigated phenotype dynamics during the EMT time course by 

creating a multivariate model comprised of aggregated data from ICW protein 

expression, microarray transcript expression, CM-H2DCF-DA oxidation, H2O2 

degradation, and GSSG/2GSH redox couple studies.  The majority of microarray 

transcript data were culled, but markers related to H2O2 production and degradation and 

regulation of the GSSG/2GSH redox couple were retained.  A key strength of PCA is its 

ability to identify correlative relationships in complex, incomplete data sets, even those 

composed of data from a variety of methods of measurement and even nominal 

classifications. 

Time point observations fell roughly along the typical rotational trajectory within 

the Scores plot with PC1 resolving early from late time points and PC2 resolving 

intermediate from early and late time points (Figure 4.7-A).  The 24-hour time point 

deviated slightly, which can be partially explained by the non-monotonic trend of 

pSmad3, Smad3, Kdeg values.  The Loadings plot is consistent with the ICW and 

microarray PCA models with the anticorrelation between epithelial/antioxidant markers 

and mesenchymal markers (Figure 4.2-B; 4.4-B; 4.7-A).  Many transcript/protein pairs 

are correlated.  In fact, in a model composed of exclusively transcript/protein pairs across 

the entire time course (Figure A.11), correlation of transcript/protein dynamics is very 

evident.  

The Biplot enables the assessment of functional aspects of the redox environment 

within the context of EMT by combining the results of redox assays (black crosses) to be 

combined with transcript and ICW data (Figure 4.7-C).  The majority of model variance 
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is explained by PC1, along which several trends are apparent.  Indicators of nucleophilic 

tone (Kdeg, GSH, total GSH, and GSSG levels) correlate with antioxidant and epithelial 

marker expression, indicating regulation of dynamics along similar time scales.  

Likewise, oxidizing shifts in CM-H2DCF-DA and EGSH data correlate with NOX4 

expression and are anticorrelated with nucleophilic tone and antioxidants.  In this manner, 

we observe that the loss of nucleophilic tone that follows TGFβ-treatment coincides with 

the transdifferentiation indicative of EMT. 
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Figure 4.7  Aggregated PCA Model from Microarray, ICW, & Redox Assays. 

PCA allows for the comparison of multiple types of data, obtained in a variety of 

experimental settings.  In this aggregated model, transcript expression, protein 

expression, CM-H2DCF-DA oxidation, H2O2 degradation rates (Kdeg), and GSSG/2GSH 

redox couple data provide a multivariate description of phenotype.  A)  The scores follow 

the phenotype through a rotational trajectory.  The single score trajectory reflects the loss 

of technical replicates upon data aggregation.  B)  Variable loading, and thus PC 

composition, is derived from multiple data sets, including microarray transcript (open 

markers), ICW (closed markers), and redox assay (cross markers) data sets.  C)  The 

biplot of the aggregated data PCA model, interrelating the information from the Scores 

and Loading Plots. 

  



www.manaraa.com

 74 

4.2.6 Mesenchymal Phenotype is Stable to Redox Perturbation 

Based on antioxidant antagonism of TGFβ signaling and the observed decrease in 

nucleophilic tone during EMT, we hypothesized that enhanced redox processes and 

continued TGFβ signaling serve to stabilize the mesenchymal phenotype following EMT.  

To determine whether the maintenance of a mesenchymal phenotype is dependent on 

redox processes and/or continued TGFβ input, we established a regimen of daily TGFβ 

supplementation, up to 4 days.  After 2 days, TGFβ treatment media was exchanged in a 

set of intervention conditions with plain media or supplemented with neutralizing anti-

TGFβ antibody, TGFβ signaling inhibitor (A8301), NAC, ebselen, or DMSO for an 

additional 2 days.  Following treatment, we used ICW analysis to measure the response 

of epithelial, mesenchymal, antioxidant, and TGFβ signaling phenotype markers.  

The responses profiles of the variables to this course of treatments were varied.  

Following 4 days of TGFβ treatment, E-cadherin (Figure 4.8-A), glutaredoxin-1 (4.8-B), 

and catalase (4.8-C) and the Smads (4.8-G, I) underwent down-regulation while β-catenin 

(4.8-D), vimentin (4.8-E), Slug (4.8-F), pSmad3 (4.8-J), and pErk1/2 (4.8-K) exhibit up-

regulation.  Notably, at later time points, Smad2 and Smad4 levels increased, while 

pSmad3 levels decreased slightly, matching the trends of differential Smad regulation 

observed in the initial ICW time course (Figure 4.1-B). 
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Figure 4.8  ICW Phenotype Profiles of Antioxidant Perturbed EMT. 

A549 cells were treated up to 4 days, with daily replacement of TGFβ, to induce EMT.  

An intervention set received 2 days of TGFβ treatment followed by replacement of TGFβ 

media with plain, neutralizing anti-TGFβ antibody, TGFβ inhibitor A8301, NAC, 

ebselen, or DMSO-containing media for additional 2 days.  The expression of 

epithelial/mesenchymal markers, antioxidants, Smads, and pErk1/2 were then measured 

via ICW assay.  Normalized data are the result of 3 independent biological replicates 

(n=3) and plotted as mean ± standard error of the mean. 
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Given the high dimensionality of this data set, we again used PCA to aid our 

analysis the transdifferentiation and response trajectories.  The rotational phenotype 

trajectory for EMT is evident as the solid line in the Scores plot (Figure 4.9-A).  

Compared to the EMT phenotype resulting from a single bolus addition of TGFβ (Figure 

4.2), the phenotype trajectory resulting from daily administration of TGFβ (Figure 4.9) 

shares similar temporal ordering of variable relationships, including anticorrelation of E-

cadherin and antioxidants with mesenchymal markers and differential Smad regulation.  

The conditions from the intervention set (dashed lines) arise from the 2-day TGFβ treated 

samples.  Examination of the Loading plot reveals familiar variable relationships, such as 

anticorrelation of E-cadherin and antioxidant markers with mesenchymal markers as well 

as anticorrelation of pSmad3 with Smad2/Smad4 (Figure 4.9-B).  The relationship 

between the variable loadings and the observation scores from all of the replicates are 

displayed in the Biplot (Figure 4.9-C).  

The response of marker expression to cessation of TGFβ signaling within the 

intervention set, 2 days of TGFβ treatment followed by supplemented media, was quite 

varied (Figure 4.8) though the resultant phenotypes of each treatment condition were 

similar (Figure 4.9).  Intervention of TGFβ treatment with supplemented media took 

place after 2 days of TGFβ treatment.  Compared to the 2-day treated condition, those 

within the intervention set are notable for little to no change in expression of E-cadherin, 

β-catenin, vimentin, and Smad3 while glutaredoxin-1, Slug, pSmad3, and pErk1/2 

expression decreases (Figure 4.8).  However, catalase, Smad2, and Smad4 expression 

increases following cessation (Figure 4.8).  PCA aids in visualizing these responses.  The 

intervention conditions (dashed lines) follow a trajectory along PC2, remaining fairly 
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constant along PC1 (Figure 4.9-A).  Variables with the largest response following 

intervention and cessation possess loading in latent variable space more heavily weighted 

along PC2 and less so along PC1 (Figure 4.9-B, e.g.  Smad4).  In contrast, variables 

exhibiting little change following cessation of TGFβ signaling possess loading mostly 

along PC1 and less so along PC2 (Figure 4.9-B, e.g.  E-cadherin). 
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Figure 4.9  PCA of Phenotype Profiles During Antioxidant Perturbed EMT. 

Induction of EMT with daily 100 pM TGFβ treatment was intervened after 2 days with 

plain media, neutralizing anti-TGFβ antibody, A8301, NAC, ebselen, or DMSO.  A)  The 

scores from a representative replicate (replicate #2) are projected along the PCs.  The 

rotational trajectory of EMT is traced in black (solid) while the intervention set (dashed) 

is distinguished from the other conditions.  The phenotype trajectories replicates #1 and 

#3 can be seen in the biplot or in Figure A.12.  B)  Variable influence on PC composition 

reveals anticorrelation of E-Cadherin/Smad3/antioxidants with mesenchymal markers as 

well as of pSmad3/pErk1/2 with Smad2/Smad4.  C)  The differences in relative 

pSmad3/pErk1/2 and Smad2/Smad4 expression contribute to differentiation of 

intervention conditions from the 2-day TGFβ conditions while E-cadherin, antioxidant, 

and mesenchymal markers contribute relatively little. 
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4.3 Discussion 

Following TGFβ treatment, A549 cells undergo EMT, which is apparent by the 

down-regulation of E-cadherin and up-regulation of N-cadherin.  Overall trends in these, 

and other markers, match changes in expression previously reported during TGFβ-

mediated EMT in A549 cells (Kasai et al., 2005; Kim et al., 2007); however, each of the 

markers possesses a distinct dynamic profile (Figure 4.1 & 4.2).  Differential regulation 

of the Smads during TGFβ-mediated EMT has been previously reported (Brown et al., 

2004; Yanagisawa et al., 1998) and responses are cell-type specific. (Poncelet et al., 

2007).  Broadly speaking, the differentiation markers and Smads suggest the phenotype 

profile is dynamic and that no two time-points are the same; therefore accurately 

determining which variables contribute to this differentiation is challenging even in this 

modest sized data set.  Our implementation of the ICW assay has enabled greater 

resolution of the time course dynamics of Smad species along with epithelial and 

mesenchymal markers than is readily achievable using traditional western blotting 

approaches.  The higher throughput afforded by ICW coupled with multivariate analysis 

enabled us to resolve the time-dependent nature of differential Smad regulation within the 

context of EMT. 

Prior studies have identified TGFβ as a regulator of NOX4 and antioxidant 

enzyme expression.  For example, NOX4 up-regulation by TGFβ is Smad3-dependent 

(Boudreau et al., 2012; Hecker et al., 2009).  Similarly, TGFβ, via Smad3, mediated the 

up-regulation of NOX4 as well as the down-regulation of catalase and manganese 

superoxide dismutase (Michaeloudes et al., 2011).  In other studies, TGFβ led to the 

down-regulation of antioxidant components, such as catalase, glutathione reductase, 
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glutathione, glutathione synthetase (Arsalane et al., 1997; Jardine et al., 2002), glutamate 

cysteine ligase (Bakin et al., 2005), and glutaredoxin-1 (Peltoniemi et al., 2004).  

Significantly, these findings were observed in various cell types, with differing doses of 

TGFβ treatment, and at numerous times.  Our findings of 50-fold NOX4 up-regulation 

concomitant with down-regulation of numerous key antioxidant enzymes (Figure 4.3) 

establishes clear anticorrelative changes at a single time point but alone does not 

discriminate between the possible synchronous expression changes that may coordinate 

remodeling of the redox environment or asynchronous regulation that may lead to 

competitive dynamics between oxidases and reductases.  

The remodeling of phenotype following TGFβ treatment can be interrogated 

through a variety of methods, each of which, independently, has its own technical 

requirements and limitations.  The high degree of concordance between transcript and 

protein expression shown here and reported by Keshamouni et al. (Keshamouni and 

Schiemann, 2009), suggests that many of the transcript dynamics during EMT are likely 

to be reflected in the corresponding protein expression dynamics.  Additionally, the union 

of these data sets enables the comparison high dimensional time course data from 

dissimilar modalities.  A prominent feature of our PCA approach was the down-

regulation of antioxidant expression on the same time scale (along PC1) during which 

mesenchymal expression is acquired during TGFβ treatment.  Had the antioxidant and 

mesenchymal markers also been anticorrelated along PC2, it would have indicated that 

antioxidants were down-regulated before mesenchymal markers were up-regulated.  

Therefore, we find that the transcriptional down-regulation of antioxidant enzymes 

temporally coincides with the up-regulation of mesenchymal marker transcripts. 
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Because the set of epithelial markers (blue circles) did not covary in expression 

during EMT, some of these transcripts, assessed in isolation, may report a false 

characterization of phenotype.  Indeed, a survey of several models of TGFβ-induced 

EMT identified numerous mixed or up-regulated epithelial markers (Chai et al., 2010).  

As with the A549 cells, many of these cell lines were of cancerous origin.  Thus, such 

seemingly contradictory findings may not reflect the biological response of normal 

epithelia to TGFβ, but may be a feature not uncommon amongst highly transformed cells. 

We have demonstrated that, following the widespread down-regulation of 

antioxidants, functional aspects of the intracellular redox environment shift in a manner 

that would favor the stability and reactivity of electrophiles and reactive species.  

Increased CM-H2DCF-DA oxidation indicates that oxidizing reactions are more favored 

following TGFβ treatment, which is corroborated by decreased CM-H2DCF-DA 

fluorescence following pre-treatment with the antioxidants NAC and catalase (Figure 4.5 

B).  Following TGFβ treatment, enhancement of several possible redox mechanisms, in 

isolation or combination, may account for the increased CM-H2DCF-DA oxidation.  

Decreased kdeg rates (Figure 4.6-B) reflect an impaired ability to eliminate electrophiles, 

such as H2O2, which can contribute to CM-H2DCF-DA oxidation (Figure 4.5-A).  It is 

possible that decreased H2O2 transport rates across the plasma membrane could explain 

the decreased kdeg values; however, the equilibration of exogenous H2O2 across the 

plasma membrane occurs on the order of 1 second (Antunes and Cadenas, 2000), while 

the half-life of H2O2 in the media was on the order of 10 minutes, indicating that 

membrane transport is not a rate-limiting step.  A more likely mechanism of decreased 

kdeg values following TGFβ treatment is a decreased capacity for flux through the 
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multiple antioxidant pathways capable of degrading H2O2.  Finally, the more oxidizing 

EGSH indicates the electrochemical capacity of the GSH redox buffer to clear electrophiles 

through reductive mechanisms is decreased.  Therefore, the multifactorial effects of 

TGFβ on the redox environment result in decreased nucleophilic tone. (Forman et al., 

2014) Further, our results indicate that the effect of TGFβ on a specific redox couple, 

such as GSSG/2GSH, may reflect perturbed regulation of numerous redox interconnected 

pathways, which are maintained in a non-equilibrium state (Kemp et al., 2008).  For 

example, GSH (Arsalane et al., 1997; Bakin et al., 2005; Jardine et al., 2002), 

glutaredoxin-1 (Lee et al., 2010; Peltoniemi et al., 2004), MnSOD, catalase, and NOX4 

(Michaeloudes et al., 2011) are among the identified factors that have been found to be 

responsible for modulating the redox environment in response to TGFβ and the induction 

of EMT.  Choosing a specific antioxidant enzyme, however, while ignoring others, and 

attributing its activity to an isolated effect within the redox environment is a gross over-

simplification in the setting of TGFβ-mediated transcriptional reprogramming.  

We observe the loss of nucleophilic tone to be coincident with change in 

phenotype that defines EMT (Figure 4.7)  Furthermore, we observed the correlation of 

antioxidants with ferritin heavy chain (FTH1) expression (Figure 4.3 & 4.4).  Within 

A549 cells, increased free intracellular iron and down-regulation of antioxidants have 

been reported as mechanisms leading to increased H2DCF-DA oxidation following TGFβ 

treatment (Bakin et al., 2005; Jardine et al., 2002; Zhang et al., 2009), though ROS 

production may be a contributory factor following EMT.  NOX4 protein expression, and 

activity, producing H2O2, is known to vary proportionally with NOX4 mRNA transcript 

expression (Serrander et al., 2007).  Given the widely reported lack of specificity of 
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H2DCF probes for specific ROS or redox reactions (Kalyanaraman et al., 2012; Karlsson 

et al., 2010; Wardman, 2007), and the observed dynamics of the vast number of factors 

that regulate the redox environment, attempts to identify specific factors responsible for 

CM-H2DCF-DA oxidation would be a futile.  Increased NOX4, increased free iron, wide 

spread antioxidant down regulation, or any combination thereof are under dynamic 

control throughout EMT and can participate in processes that lead to CM-H2DCF-DA 

oxidation. 

Smads have been shown to exhibit redox regulation (Cucoranu et al., 2005; Fatma 

et al., 2009; Meurer et al., 2005; Michaeloudes et al., 2011; Ono et al., 2009) and TGFβ 

can induce changes in the redox environment (Arsalane et al., 1997; Boudreau et al., 

2012; Felton et al., 2009; Hecker et al., 2009; Lee et al., 2010; Peltoniemi et al., 2004; 

Zhang et al., 2009).  Therefore, it was possible that modulation of the redox environment 

precedes the differentiation along the epithelial/mesenchymal spectrum and alters Smad 

signaling in the process.  Our study allowed for elucidation of the temporal relationship 

between reprogramming of the redox environment and the induction of EMT by TGFβ.  

The dynamics of CM-H2DCF-DA oxidation and glutathione potential (Figure 4.6) are 

consistent with the results in Figure 4.4, indicating that decrease in nucleophilic tone 

occurs during the course of EMT, not preceding it.  Further, the decreased tone occurs at 

too late a time to account for elevation of pSmad3 levels (Figure 4.1-C).  These findings 

relate the natural dynamic response of the redox environment to signaling and 

differentiation caused by TGFβ during EMT.  Previous studies linking H2O2 treatment 

with the induction of TGFβ-mediated, pSmad3-dependent EMT in A549 cells relied upon 

exogenous administration of hyper-physiological levels of H2O2 (Gorowiec et al., 2012).  
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Our findings negate a potential mechanism of TGFβ-mediated EMT via an induced feed-

forward loop that would enhance Smad3 phosphorylation by decreased nucleophilic tone. 

We observed anticorrelation of pSmad3 with Smad2 and Smad4 (Figure 4.9-B), 

which was also a feature in the initial EMT time course study (Figure 4.2-B).  In 

agreement with previous studies (Brown et al., 2004; Poncelet et al., 2007; Yanagisawa et 

al., 1998), daily TGFβ treatment resulted in suppressed Smad3 levels (Figure 4.8-H).  

Cessation of TGFβ signaling had no effect on Smad3, suggesting its expression is 

independent of active TGFβ signaling.  Smad2 and Smad4, however, exhibited a strong 

up-regulation, suggesting that cessation of TGFβ signaling and pSmad3 activity may 

enable subsequent Smad2 and Smad4 up-regulation.  The differential Smad activities 

operated independently from the state of differentiation and presence of exogenous 

antioxidants. 

While we anticipated a relative loss of mesenchymal phenotype, via MET, for the 

intervention set conditions, the expression of E-cadherin, β-catenin, and vimentin 

remained largely unchanged.  The failure of most of these conditions to exhibit a relative 

MET is notable for several reasons.  NAC and ebselen treatments, common non-specific 

antioxidants, were not able to rescue an epithelial phenotype following EMT, nor were 

inhibitions of TGFβ.  Each of the intervention conditions, except plain media and DMSO, 

are known to inhibit TGFβ signaling at the concentrations used and through independent 

mechanisms: neutralizing anti-TGFβ antibody (Brown et al., 2012), A8301 (Aref et al., 

2013; Tojo et al., 2005), NAC (Cucoranu et al., 2005; Li et al., 2004; Lichtenberger et al., 

2006; Meurer et al., 2005; Rhyu et al., 2005), ebselen (Michaeloudes et al., 2011).  NAC 

(Felton et al., 2009; Rhyu et al., 2005) and A8301 (Tojo et al., 2005) inhibit TGFβ-
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mediated EMT, presumably through inhibition of TGFβ signaling and Smad3 

phosphorylation.  TGFβ signaling is decreased within the intervention set compared to 

the 2-day treatment condition, as indicated by decreased slug, pSmad3, and pErk1/2 

expression (Figure 4.8).  Smad expression exhibited vast remodeling, irrespective of 

maintenance of the mesenchymal phenotype or redox perturbation.  Therefore, it appears 

that sustained TGFβ signaling and pSmad3 activity is not required to maintain a 

mesenchymal phenotype and that the state of differentiation following 2 days of TGFβ 

treatment is stable over the course of 2 days, even in the absence of continued TGFβ 

signaling or when augmented by exogenous antioxidants. 

A8301-treated cells displayed a slight distinction from the rest of the intervention 

group in that in addition to displacement along PC2, its position also reversed along PC1 

compared to the 2-day treated condition, suggesting a slight MET-type differentiation 

(Figure 4.9).  Slight elevations in expression of markers correlated with an epithelial 

phenotype are consistent in the A8301 condition compared to the rest of the intervention 

set (Figure 4.8-A-C, H).  A8301, a TGFβ receptor kinase inhibitor, most strongly inhibits 

TGFβ signaling but it also significantly inhibits a number of other pathways, such as 

VEGFR, RIPK2, MINK1, p38α MAPK, PKD1, FGFR1, and CK1 (Vogt et al., 2011).  

Phospho-Erk1/2 expression is slightly suppressed in the A8301 condition, return to near 

baseline levels, while pErk1/2 levels remain slightly elevated compared to the untreated 

control (Figure 4.8-K).  

It is possible that pErk1/2 activity is sufficient to maintain the mesenchymal 

phenotype and that A8031 activity, directly or indirectly, inhibits pErk1/2 and in doing so 

induces MET.  MAPKs and a number of other signaling pathways are components of 
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non-canonical TGFβ signaling (Zhang, 2009).  However, as neutralizing anti-TGFβ 

antibody and exogenous antioxidants failed to induce MET, it appears that neither 

canonical nor non-canonical TGFβ signaling is responsible for maintenance of the 

mesenchymal phenotype.  Still, pErk1/2 may serve to maintain phenotype.  MEK 

inhibition has been demonstrated as a means to prevent TGFβ-mediated EMT, 

implicating a mechanism of Erk activation in the induction of EMT (Chen et al., 2011; 

Niu et al., 2012; Xie et al., 2004).  Alternatively, MEK inhibition was also demonstrated 

to be ineffective in the prevention of EMT but found to be critical for the induction of 

FGF1-mediated reversal of EMT (MET) (Ramos et al., 2010).  Similar findings have 

been described for other non-canonical pathways (Chen et al., 2011; Fong et al., 2009; 

Janda et al., 2002; Zhang et al., 2010).  The collaboration of multiple signaling pathways, 

sometimes referred to as cross-talk, in the propagation of signals are likely to be critical 

components in the determination of cell fate rather than auxiliary pathways.  Such 

scenarios highlight the complex, multivariate, non-linear nature in which biological 

systems are controlled. 

A549 cells are an immortalized lung carcinoma cell line (Giard et al., 1973), in 

which the responses to TGFβ have been studied extensively.  Studies of more focused 

aspects of phenotype (e.g.  EMT, antioxidant down-regulation, or NOX4 up-regulation) 

are critical for our understanding of molecular mechanisms of transdifferentiation but 

underappreciate the scope and scale in which TGFβ-mediated transformation occurs.  

Here we demonstrate that such characteristics do not operate in isolation and that the 

response of A549 cells to TGFβ involves remodeling of the redox environment, resulting 
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in decreased nucleophilic tone, induction of EMT, and perturbation of Smad transcription 

factor expression.  

Under normal developmental conditions, EMT is a highly coordinated and 

regulated effort, subject to control by multiple extracellular and intracellular signaling 

pathways, including MAPKs (Thiery et al., 2009).  Our results suggest that in the A549 

cell line, the induction of TGFβ-mediated EMT is intrinsically different from the reversal 

of EMT via MET.  A549 cells are, in a sense, primed for response to TGFβ as they 

possess an activating Ras mutation (Valenzuela and Groffen, 1986), which is a key 

enabler of TGFβ-mediated EMT (Horiguchi et al., 2008).  Similarly, in mouse mammary 

epithelial cells, transformation via H-Ras conferred the ability to undergo TGFβ-

mediated EMT and maintain the resultant mesenchymal phenotype to untransformed cells 

(Janda et al., 2002).  In the same cell lines, glutaredoxin down-regulation by TGFβ was 

found to be MAPK-mediated and its overexpression prevented induction of EMT (Lee et 

al., 2010) underscoring the interconnectedness of EMT and the redox environment.  

While the decreased nucleophilic tone acquired during EMT may not serve to stabilize 

the mesenchymal phenotype, the altered redox environment may play a role in other 

cellular behaviors such as enhanced cell motility (Boudreau et al., 2012; Tobar et al., 

2010) or apoptotic resistance (Black et al., 2004; Sancho and Fabregat, 2011).  Cannito et 

al. have presented an extensive review of the numerous redox mechanisms that have been 

identified within the context of various models of EMT (Cannito et al., 2010).  

Transformed cells may be primed for EMT through perturbed intracellular signaling or 

altered redox states.  Judicious attribution or negation of such mechanisms for a particular 

cell type would require extensive study.  
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The A549 cell line is a transformed carcinoma cell line that exhibits phenotypic 

deviations from healthy primary lung epithelia.  A549 cells exhibit an intermediate 

phenotype, displaying some mesenchymal characteristics alongside the epithelial 

phenotype (Huang et al., 2013).  Additionally, antioxidant enzymes are highly expressed 

(Eriksson et al., 2009; Kweon et al., 2006).  An impaired Keap1-Nrf2 interaction in A549 

cells has resulted in a much greater nucleophilic tone compared to non-malignant cells 

(Singh et al., 2006).  Therefore our observations about the multivariate nature of EMT 

should be best understood in the context of highly transformed cells responding to TGFβ, 

as might occur within the tumor microenvironment.  In such transformed tissues, 

reversion of a TGFβ-influenced mesenchymal phenotype is not likely to be as simple as 

blockade of TGFβ signaling.  Thus administration of treatments using non-specific 

antioxidants, small molecule inhibitors, or biologics that specifically target TGFβ 

signaling may be insufficient; however, such treatments may play key roles in 

combination therapies that attempt to restore normal function through systems level 

approaches.  More robust characterization of multivariate phenotype dynamics will allow 

for parsing of covariant phenotypic programs, which will improve our ability to modulate 

specific cellular behaviors and responses. 

4.4 Conclusions 

The phenotypic response of A549 cells to TGFβ treatment is an extensive and 

dynamic process with relevance to carcinogenesis and other pathologies.  The precision 

and reproducibility afforded by ICW techniques allowed us to construct a multivariate 

representation of phenotype dynamics during EMT using PCA.  This model demonstrated 

the validity of the approach, robustness of the transdifferentiation trajectories, and helped 
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generate additional research questions.  We examined the scope of redox remodeling 

during EMT and found that multiple antioxidants enzymes are down-regulated while the 

oxidase NOX4 is up-regulated by TGFβ on a time scale that matches the acquisition of a 

mesenchymal phenotype.  Increased CM-H2DCF-DA oxidation, decreased H2O2 

degradation, and elevated GSSG/2GSH redox potentials provided additional functional 

evidence of decreased nucleophilic tone in parallel with the acquisition of the 

mesenchymal phenotype.  Following EMT in A549 cells, the mesenchymal phenotype 

was stable in the presence of the antioxidants NAC and ebselen as well as TGFβ 

inhibition through neutralizing antibody and the small molecule inhibitor A8301.  

Additionally, we observed differential Smad dynamics operating independently of 

epithelial/mesenchymal differentiation.  This novel approach enabled the investigation of 

the dynamics of multivariate phenotype states as they developed over time.  This 

investigation yielded a new perspective on the state of intracellular redox environment 

within the context of EMT. 
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4.5 Materials & Methods 

4.5.1 Cell Culture & Treatment Conditions 

A549 lung carcinoma cells were obtained from American Type Culture Collection 

(ATCC; CCL-185) and maintained in high glucose DMEM with L-glutamine (Sigma 

D5796), 10% FBS (Sigma F4135) and penicillin (50 IU/ml)-streptomycin (50 µg/ml) 

(Cellgro 30-001-CI).  Cells were plated in 96-well plates at density of 5,000 cells per well 

in growth media and maintained at 37˚C and supplemented with 5% CO2.  The following 

day, the cells were serum starved with reduced serum (0.5% FBS) media for 24 hours 

prior to treatment.  Cells were maintained and treated in 175 µl media per well.  Cells 

were treated with a bolus of 200 pM TGFβ for the EMT time course, qRT-PCR, CM-

H2DCF-DA, and H2O2 degradation studies.  For the GSH study, cells were seeded in T-

75 flasks at a density of 5,000 cells/cm
2
 and maintained in 15 ml of culture media.  

Culture media for the EMT intervention study was changed daily and consisted of either 

plain media, 100 pM TGFβ (Millipore, GF111), 10 µg/ml neutralizing anti-TGFβ 

antibody (R&D Systems, MAB240), 2 µM A8301 (Santa Cruz, sc-203791; mobilized in 

DMSO), 2 mM N-Acetyl-L-cysteine (NAC; Sigma-Aldrich, A9165), 2 µM ebselen (Alfa 

Aesar, J63190; mobilized in DMSO), or 0.2% v/v DMSO (Fisher Scientific, BP231).  All 

experiments were the result of three independent biological replicate experiments. 

4.5.2 In-Cell Western (ICW) Assay 

Following treatment, cells were washed with PBS with Ca
2+

/Mg
2+

 and fixed with 

100 µl 4% paraformaldehyde per well for 20 minutes at ambient temperature.  The cells 

were permeabilized by washing five times with 50 µl 0.1% Triton X-100 solution for 5 

min with gentle rotation at ambient temperature.  The plates were blocked with 100 µl of 
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blocking buffer consisting of 0.5x Rockland Blocking Buffer for Fluorescent Western 

Blotting (MB-070) in tris-buffered saline (TBS) for 1.5 hours with gentle rocking at 

ambient temperature.  Following blocking, cells were immunostained with 35 µl of 1˚ 

antibody solutions (Table S3) overnight at +4˚C with gentle rotation in blocking buffer 

supplemented with 0.1% Tween-20.  The plates were then washed five times with TBS-T 

(TBS with 0.1% Tween-20) under gentle rotation at ambient temperature for 5 minutes 

each.  Plates were stained with 45 µl Donkey anti-Rabbit antibody (1:800; LiCor, IRDye 

800CW, 926-32213) and CellTag 700 (0.2 µM; LiCor, 926-41090) in blocking buffer 

supplemented with 0.2% Tween-20 for 1.5 hours.  The plates were washed four times 

with TBS-T and once with TBS before being emptied and sealed for imaging.  Signal 

intensities in the 700 nm and 800 nm channels were measured on stained plates via LiCor 

Odyssey system and analyzed in LiCor Image Studio (v2.1.10).  For a given well, non-

specific secondary antibody background staining (800background) was subtracted from the 

raw 800 channel intensity (800raw) to yield the 800 channel signal (800signal) intensity.  

The loading control normalized signal intensity was determined by dividing 800signal by 

the 700 channel signal intensity.  To normalize individual signals across plates, the 

loading control normalized signal intensity was divided by the average loading control 

normalized signal intensity of the control condition from all of the plates (untreated A549 

cells).  
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Table 4.1  Primary Antibody Conditions for ICW Staining 

Target Vendor Clone Product No. Dilution 

E-cadherin Cell Signaling 24E10 3195 1:400 

Vimentin Cell Signaling D21H3 5741 1:200 

β-catenin Cell Signaling 6B3 9582 1:200 

α-Smooth Muscle Actin abcam Polyclonal ab5694 1:100 

Smad2 Cell Signaling D43B4 5339 1:100 

Smad3 Cell Signaling C67H9 9523 1:100 

p-Smad3 abcam EP823Y ab52903 1:400 

Glutaredoxin-1 abcam Polyclonal ab45953 1:500 

Catalase Cell Signaling D4P7B 12980 1:800 

pErk1/2 Cell Signaling D13.14.4E 4370 1:200 

 

 

 

4.5.3 Quantitative Real-Time PCR 

Cells were seeded in T-175 flasks at a density of 5,000 per cm
2
 and serum starved 

(0.5% FBS) the next day.  On the following day, cells were treated with 200 pM TGFβ 

for 48 hours.  Cells were trypsinized and 10
6
 cells lysed and homogenized (QIAshredder, 

Qiagen, 79656).  Next, RNA was isolated via RNeasy Mini kit (Qiagen, 74104), genomic 

DNA digested (Qiagen, RNase-free DNase Set, 79254), and the RNA concentration 

determined by NanoDrop.  Isolated RNA (2 µg) was converted to cDNA (Qiagen, RT
2
 

First Strand Kit, 330401), prepared for amplification (Qiagen, RT
2
 SYBR Green ROX 
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qPCR Mastermix, 330522), loaded onto the Oxidative Stress Plus PCR Array (Qiagen, 

PAHS-065YC; primers detailed in Table S4), and amplified via thermocycling (Applied 

Biosystems, Step One Plus Real-Time PCR System; 40 cycles).  Genes in the array were 

categorized as “antioxidant”, “pro-oxidant”, “undetermined significance”, or as a 

housekeeping gene upon review of the particular entry in the NCBI Gene Database for 

each gene.  Following amplification, samples were analyzed as instructed by the Qiagen 

product materials, with the exception of using ANOVA with Fisher’s Least Squares 

Difference in place of the Student’s T-test to determine significance of up/down-

regulation of transcripts following TGFβ treatment.  P values < 0.0001 were arbitrarily 

set to 0.0001.  Transcript Ct values were normalized to loading controls ACTB, GAPDH, 

HPRT1, B2M, and RPLP0 to obtain ∆Ct values Statistical analyses were performed on 

the ∆Ct values.  Next ∆Ct values from TGFβ-treated samples were subtracted from 

untreated controls to obtain ∆∆Ct values. ∆∆Ct values were used to compute fold-change 

values (2
-∆∆Ct

).  

4.5.4 Multivariate Analysis 

Umetrics SIMCA-P+ (v12.0.1.0) was used to perform principal component 

analysis (PCA).  Fold-change ICW data was log-transformed and unit variance scaled for 

modeling purposes.  Transcript expression of A549 cells during TGFβ treatment, over the 

course of 72 hours, was previously characterized by Keshamouni et al. using Affymetrix 

HG-U133_plus_2 microarrays (Keshamouni et al., 2009).  Data were obtained from the 

NCBI Gene Expression Omnibus entry GSE17708, which were uploaded following the 

work by Sartor et al. (Sartor et al., 2010).  A list of genes included in the analysis can be 

found in Table S1.  Many of the transcripts were measured with multiple primers.  When 
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multiple primers were present, the average of all the primers were used to create a single 

averaged response for each variable at each time point.  Transcript expression for each 

variable corresponds to log-transformed fold-change.  Uninformative probes were 

removed to improve model fit.  Data for the transcript-exclusive model were Pareto 

scaled while data for aggregated models were unit variance scaled.  Pareto scaling 

improves the fit by scaling variable variance according to its standard deviation such that 

experimental noise is minimized and the model structure is more preserved and is 

suitable for quantitative data, such as microarray analyses (van der Werf, 2006; 

Wheelock and Wheelock, 2013).  The significance of principal components was 

confirmed using cross-validation rules in SIMCA-P+.  Details of fit, quality, and 

construction for each model can be found in APPENDIX A . 

4.5.5 CM-H2DCF-DA Fluorescence 

Following treatment, cells were trypsinized (CellGro, 25-053-CI) and 

resuspended in HBSS without phenol red (Thermo Scientific HyClone, SH30268) at a 

working concentration of 5x10
5
 cells/ml.  Antioxidant pre-treatments of NAC or bovine 

catalase (Sigma-Aldrich, C1345) were applied for 1 hour prior to a 30 minute incubation 

with 10 µM CM-H2DCF-DA (Invitrogen, C6827).  Co-treatment with H2O2 (100 µM) 

occurred during the final 15 minutes of the CM-H2DCF-DA incubation.  The cells were 

then washed and co-stained with SYTOX Blue (Invitrogen, S34857, 1:1000) for 

live/dead discrimination.  A BD LSR II flow cytometer was used to resolve SYTOX Blue 

(λex=445, λem=473/10) and CM-H2DCF-DA (λex=488, λem=530/30) signals.  Cells were 

gated by FSC/SSC to exclude cellular debris, then by FSC-A/FSC-H to exclude non-

singular events, and finally by absence of SYTOX Blue staining, to exclude all non-
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viable cells.  CM-H2DCF-DA signals were then characterized by their geometric mean 

fluorescence intensity. 

The CM-H2DCF-DA fluorescence time course studies were performed in 96-well 

plates with 6 technical replicates per time point.  Following TGFβ treatment, the plates 

were washed with Hank’s balanced salt solution with calcium and magnesium (HBSS) 

and incubated with 10 µM CM-H2DCF-DA in 75 µl HBSS for 30 min at 37˚C with 5% 

CO2.  The cells were then washed with 150 µl HBSS and suspended in 75 µl HBSS for 

fluorescence measurement on a BioTek Synergy 4 plate reader (λex = 485/20 nm 

excitation, λem = 528/20 nm).  Next, the cells were stained with 5 µg/ml Hoechst 33342 

(AnaSpec, 83218) in 50 µl HBSS for 30 min at 37˚C with 5% CO2 (λex = 350 nm, λem = 

461 nm).  Unstained wells were used to subtract background fluorescence from both 

signals.  The CM-H2DCF-DA fluorescence intensity was then normalized with respect to 

Hoechst 33342 staining for each well and normalized to the untreated control, giving the 

loading normalized CM-H2DCF-DA signal. 

4.5.6 Luminol Assay for Hydrogen Peroxide 

Cellular H2O2 degradation rates were measured during the course of EMT using a 

luminol-based assay based on a method for determining the first-order kinetics of H2O2 

turnover.  A condition-specific rate constant was determined through sampling the 

supernatant for H2O2 at sequential time points following bolus addition of H2O2 (Sobotta 

et al., 2013).  Cells were treated with TGFβ for 1, 2, or 3 days in a 96 well plate.  

Following treatment, the cells were incubated with 20 µM H2O2 in HBSS for multiple 

time points up to 60 minutes.  H2O2 present at the end of the time course was measured 

with a luminol (50 µM; Alfa Aesar, 3-Aminophthalhydrazide monosodium salt, 
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L15205)/sodium hypochlorite (1 mM; Sigma-Aldrich, 239305)-based assay and 

compared against a titrated H2O2 standard.  Cell densities were normalized with Hoechst 

33342 staining.  H2O2 degradation rates (kdeg) were calculated by fitting the H2O2 

concentrations, incubation time, and cell density data to a curve of exponential decay 

derived from a model of H2O2 decay.  The kdeg values from each assay were normalized 

to the untreated condition.  More detailed information regarding the luminol assay can be 

found in APPENDIX A.7  Luminol Assay for Hydrogen Peroxide. 

4.5.7 Glutathione Concentration & Redox Potential Measurement 

Cells were treated with 200 pM TGFβ in the presence of 10% FBS for 48 and 96 

hours.  Following treatment, cells were trypsinized and analyzed via Beckman Coulter 

Vi-Cell XR to measure cell density, viability, circularity, and diameter.  The cells were 

transferred to a 96-well plate to measure the total GSH concentration (20,000 cells/well) 

and GSSG concentration (40,000 cells/well) compared to a standard curve using the 

Promega GSH/GSSG-Glo Assay (Cat. # V6611) with 3 technical replicates per condition.  

Cell shape was approximately spherical following trypsinization and spherical cell 

volumes calculated from diameters.  Intracellular reduced GSH and GSSG levels were 

calculated from the GSH/GSSG-Glo Assay conditions.  The redox potential was 

calculated according to the GSSG/2GSH half-cell reduction potential (EGSH) with the 

electrochemical constants presented by Schafer and Buettner (∆E˚=-240 mV, pH 7.0, 

n=2, F=9.6485x10
4
 C mol

-1
, R=8.314 J K

-1
 mol

-1
, T=310 K) (Schafer and Buettner, 

2001). 
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CHAPTER 5   DISTINCT DISTRIBUTIONS OF SINGLE-CELL 

TRANSPORTER HETEROGENEITY GOVERN SIDE 

POPULATION FORMATION FOLLOWING TGFβ-MEDIATED 

EMT. 

 

 

5.1 Introduction 

Relapse is a significant obstacle in the treatment of cancer.  Hyper-mutability and 

unchecked proliferation of cancer cells can result in reemergence of disease if a subset of 

cancer cells survives chemotherapeutic interventions. (Hanahan and Weinberg, 2011) 

Multidrug resistance (MDR) is a cellular phenotype characterized by enhanced survival 

in presence of cytotoxic agents.  Up-regulation of the ATP-binding cassette (ABC)  G2 

(ABCG2/BCRP) transporter is a mechanism through which cells can enhance efflux of 

cytotoxic compounds and acquire a MDR phenotype. (Videira et al., 2014)  Patients with 

cancers expressing high levels of ABCG2 experience poorer prognoses, with decreased 

overall survival and higher rates of relapse. (Galimberti et al., 2007; Lee et al., 2012; 

Nasilowska-Adamska et al., 2013; van den Heuvel-Eibrink et al., 2007)  Therefore, the 

activity of ABCG2 is of great clinical significance. 

The ABC superfamily transporters are characterized by their ability to bind and 

export a wide array of substrates in an ATP-dependent manner. (Sharom, 2008)  ABCG2 

and a number of related transporters accept GSH as a substrate and mediate its efflux. 

(Brechbuhl et al., 2010; 2009; Leier et al., 1996; Lorendeau et al., 2014; Salerno and 
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Garnier-Suillerot, 2001; Salerno et al., 2004; SHEN et al., 1996)  Additionally, ABCG2 

expression is regulated by the antioxidant master regulator Nrf2 (Adachi et al., 2007; 

Hong et al., 2010; Singh et al., 2010; Wang et al., 2014), and ABCG2 activity produced 

antioxidant-like effects.  (Kubota et al., 2010; Maher et al., 2014; Shen et al., 2010)  

These findings indicate that ABCG2 activity and the MDR phenotype may be correlated 

with antioxidant expression within a cell population.  

ABCG2 activity is measured in a Hoechst staining assay, termed a side population 

assay, in which a particular sample is split into two conditions, one containing an 

inhibitor of ABCG2 (+FTC) and the other lacking inhibition (-FTC). (Golebiewska et al., 

2011; Kim et al., 2002; Scharenberg, 2002; Zhou et al., 2001)  Fumitremorgin C (FTC) is 

a potent and specific inhibitor of ABCG2. (Rabindran et al., 1998; 2000)  ABCG2 

activity is apparent in the assay as a difference in Hoechst staining between the +FTC and 

-FTC condition where enhanced transporter activity in the -FTC condition manifests as a 

discernible subpopulation, designated as the side population (SP), with decreased cell 

staining compared to equal staining non-side population (NSP) cells. (Petriz, 2013) 

The SP assay has been used to identify SP cells since its initial characterization in 

murine hematopoietic stem cells. (Goodell et al., 1996)  Since then, some reports equate 

SP cells with cancer stem cells, distinguished from non-cancer stem cell-like NSP cells, 

without any additional characterization of cancer stem cell phenotype. (Ho et al., 2007; 

Seo et al., 2007) Although there are numerous examples of the non-equivalence of SP 

cells with stem cells, (Broadley et al., 2011; Burkert et al., 2008; Li and Laterra, 2012; 

Lichtenauer et al., 2008; Morita et al., 2006), many studies erroneously conflate SP cells 

with cancer stem cells based on these early findings, and in spite of more recent reports 
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of the vast phenotypic heterogeneity of surface marker expression on SP cells. (Boesch et 

al., 2014; Naylor et al., 2005)  Some report the SP as an enriched source of cancer stem 

cells and characterize the necessary functional activities or surface markers that 

corroborate status as cancer stem cells. (Akunuru et al., 2012; Naylor et al., 2005; Yasuda 

et al., 2013) Therefore, the SP might be a source of relative cancer stem cell abundance 

but it is inaccurate to conceptualize a SP cell as a cancer stem cell based upon its staining. 

At its most basic level, the side population is a fluorescence-staining assay that is 

influenced by a number of kinetic factors, such as staining time and concentration.  Use 

of differing Hoechst concentrations, incubation time, inhibitors, or gating strategies can 

yield widely different SP sizes. (Golebiewska et al., 2011; Ibrahim et al., 2007; Smith et 

al., 2012)  However, the interpretation of transporter activities within an individual 

sample is valid as the staining conditions are internally consistent.  Transporter 

heterogeneity results in the formation of a SP.  Such heterogeneity may reflect other 

meaningful phenotype aspects.  Heterogeneity of the A549 cell line has been reported, 

including with respect to antioxidant expression profiles. (Bechyne et al., 2011; 

Watanabe et al., 2002)  It is possible that the heterogeneity of transporter activity is 

indicative of differences in antioxidant expression status.  

A difference in ABCG2 activity within a population is conducive to the formation 

of a SP; however, it is not understood how heterogeneity of transporter activity at the 

single-cell level manifests as a SP at the population scale.  Similarly, down-regulation of 

ABCG2 during TGFβ-mediated EMT decreases SP size (Akunuru et al., 2012; Ehata et 

al., 2011; Kabashima et al., 2009; Mallini et al., 2013; Yin et al., 2008), though it is not 

known how regulation of transporter activity modulates SP size.  We hypothesize that the 
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transporter activity of SP cells is significantly higher than that of NSP cells and that 

down-regulation of ABCG2 during EMT results in decreased frequency of high 

transporter-activity cells, suppressing the size of the SP. 

We sought to define the role of ABCG2 activity heterogeneity in formation of 

side populations through the implementation of a multiscale model where heterogeneity 

of transporter activity was simulated at the single-cell level as a means to investigate 

emergence of a SP at the population level.  We observed a SP in A549 cells that was 

dynamic in nature, and reduced with TGFβ treatment.  We developed and validated 

objective tools to measure SP size and implemented them in a computational 

investigation of SP emergence from in silico Hoechst stained cell populations.  We 

observed SP formation in heterogeneity scenarios in which a majority of the population 

was irresponsive to transporter inhibition and paired with a highly responsive 

subpopulation.  
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5.2 Results 

5.2.1 Side Population in A549 Cells 

Following passage, A549 cells were maintained in culture for 4 days before being 

processed for a SP assay.  A discernible SP was observed as a region of increased cell 

density, with lower Hoechst Red and Hoechst Blue signal, in the -FTC condition 

compared to the +FTC condition (Figure 5.1-A).  TGFβ-treatment (100 pM, 4 days) of 

A549 cells eliminated the apparent SP (Figure 5.1-B).  Gating strategies for measuring 

the size of a SP are highly variable. (Akunuru et al., 2012; 2011; Liu et al., 2014; Sabisz 

and Skladanowski, 2009; Sung et al., 2008; Tirino et al., 2013; Yeh et al., 2013)  In an 

effort to be as consistent as possible, we followed a strict protocol for SP gating to 

minimize bias and subjectivity in our measurements.  Quantification of the %SP in the -

FTC conditions for an untreated control and TGFβ-treated samples reveals a decrease in 

the SP size following TGFβ treatment from  ~20% to ~0.1% (Figure 5.1-C). 

The SP assay involves splitting a sample into +FTC and -FTC conditions before 

Hoechst staining, followed by measurement of Hoechst fluorescence in two emission 

channels via flow cytometry (Figure 5.2-A).  The conceptual model that is the basis of 

the SP assay is depicted in Figure 5.2-B.  Staining involves diffusion of extracellular 

Hoechst through cell membranes.  The +FTC condition inhibits ABCG2-mediated efflux 

of Hoechst and is used to identify regions of Hoechst staining where transporter activity 

is negligible.  Cells within this region are termed non-side population (NSP) cells.  

Uninhibited in the -FTC condition, ABCG2 actively exports Hoechst from the cell, 

leading to decreased Hoechst staining and increased cell density in a region of lower 

Hoechst Red and Blue signal, compared to the +FTC condition.   
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Figure 5.1  Flow Cytometry Density Scatter Plots of a Side Population. 

A)  Hoechst Red and Blue channel emission in flow cytometry results from a 

representative sample from a SP assay in A549 cells 4-days after passage.  Plots are 

scatter plot densities with each condition normalized to its respective maximum value.  

Cells were incubated with 10 µM FTC or DMSO vehicle for 30 minutes prior to 90 

minutes of 5 µM Hoechst 33342 staining.  The SP is visible as the population of cells in 

the left quadrant gates of the -FTC condition.  The quantification of %SP in this plot was 

calculated to be 20%.  B)  A representative sample of SP assay results for A549 cells 

treated with 100 pM TGFβ for 4 days.  The quantification of %SP in this plot was 

calculated to be 0.12%.  C) %SP quantification from control (A) and TGFβ-treated (B) 

samples for 4 replicates.  Plotted as mean ± standard error of the mean.  Significance was 

determined with a t-test, p<0.05, and indicated by the asterisk (*).  
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Figure 5.2  Hoechst Staining Overview and SP Assay Conceptual Model. 

A)  Experimental workflow of sample preparation and processing in a SP assay.  Each 

sample (1) is split into two conditions, with (+FTC) and without (-FTC) the ABCG2 

inhibitor FTC (2).  Both conditions are then stained with Hoechst 33342 (3) and the 

resultant fluorescence measured via flow cytometry (4).  The +FTC condition is used to 

define a gate for the non-side population (NSP) region (5), which is then applied to the -

FTC condition (6) to identify the SP region (green box), which is measured as percent of 

the parent population (7).  B)  Schematic of the Hoechst transport processes presumed to 

underlie the SP assay.  Hoechst 33342 passively diffuses into the cell, where it is 

transported out of the cell via transporter (-FTC condition) or binds to DNA.  The in 

+FTC condition, FTC inhibits the transporter, preventing transporter-mediated efflux. 
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5.2.2 TGFβ-Mediated ABGC2 Down-Regulation 

Owing to decreased SP size in TGFβ-treated cells, we hypothesized that 

phenotypic transformation under TGFβ-treatment would involve down-regulation of 

ABCG2.  A549 cells were treated with 0, 1, 10, and 100 pM TGFβ for 4 days, after 

which they were stained for surface marker expression of E-Cadherin, N-Cadherin, and 

ABCG2 (Figure 5.3-A,B).  In a dose-dependent manner, TGFβ treatment led to decreased 

E-Cadherin, increased N-Cadherin, and decreased ABCG2 expression.  Shifts in the 

staining distributions reflecting these changes in expression are plotted pairwise in Figure 

B.1.  Furthermore, we observed a strong correlation between SP size and ABCG2 surface 

marker expression in A549 cells (Figure 5.3-C). 

5.2.3 SP Dynamics in Culture with TGFβ-Exposure 

Side population size was assessed as function of time after passage and of TGFβ 

treatment.  Four days after passage, A549 cells were again passaged to start the time 

course.  The day after passage corresponds to Day 0 of the time course, during which the 

SP size was first assessed (Figure 5.4-A).  On Day 0, TGFβ treatments were initiated at 0, 

1, 10, and 100 pM concentrations.  Side populations were then characterized for each 

sample at two-day intervals for six days.  The %SP was found to decrease from ~20% at 

the time of passage (Day 4) to ~2% on the following day (Day 0).  Increasing time in 

culture was associated with increasing SP size for untreated and 1 pM TGFβ conditions.  

Larger doses of TGFβ (10 & 100 pM) prevented the increase in SP associated with time 

after passage (Figure 5.4-A,B).  Attenuation of SP size by TGFβ was dose-dependent as 

was the range of SP staining intensity, with higher doses of TGFβ exhibiting less intense 

reductions in staining in the absence of FTC (Figure 5.4-B).  
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Figure 5.3  Surface Marker Staining Following TGFβ-Mediated EMT. 

Surface marker expression measured via flow cytometry after staining with anti-PE-

CF594/E-Cadherin, PE/N-Cadherin (A), and APC/ABCG2 (B) antibodies on live A549 

cells following 4-day treatment with 0, 1, 10, and 100 pM TGFβ.  Surface marker 

staining data were obtained from 3-color staining, with compensation, from 3 biological 

replicates.  Values are plotted as the geometric means ± 95% confidence interval of the 

sample geometric mean fluorescence intensities (GMFI).  A significant difference from 

the 0 pM TGFβ condition was determined with a two-way ANOVA, p<0.05, and are 

indicated by asterisks (*).  C)  Mean %SP plotted against ABCG2 expression for the Day 

4 condition from the SP time course experiment (Figure 5.4), along with a best-fit line 

from a linear regression, R
2
 shown, and 95% confidence interval.   
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Figure 5.4  Time Course of %SP in Culture & with TGFβ Treatment. 

A) %SP in A549 cells in the days following passage (Day 0), treated with 0, 1, 10, or 100 

pM TGFβ for the entire time in culture.  Values are plotted as mean ± standard error of 

the mean.  Flow cytometry density scatter plots of SP assay -FTC conditions from a 

replicate of Day 4 samples in the %SP time course assay for 0 (B), 1 (C), 10 (D), and 100 

pM (E)  TGFβ samples, shown with SP gates set by each sample’s respective +FTC 

condition. 
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5.2.4 Objective Side Population Measurements 

SP size is conventionally characterized by %SP, defined as percent of parent 

population, with user-defined/manual gating of SP and NSP regions within a scatter plot 

along the Hoechst Red and Blue emission channels.  While scatter plots enable the range 

of staining values to be easily observed, they fail to faithfully convey information of 

population density.  Pseudo-colored scatter plots improve upon this by adding this 

dimension to the data.  In our plots of SP various sizes (Figure 5.4-B), with larger SP size 

we observe a larger range of Hoechst Red and Blue staining and a corresponding shift of 

cell density within the population.  Pseudo-colored scatter plots are still deficient in one 

key aspect.  While we could visualize the differences in cell population density within an 

individual SP plot, we could reliably compare differences in population density across 

different flow cytometry samples or even of +FTC to -FTC conditions.  We hypothesized 

that characterization of Hoechst Red and Blue signals will enable objective measurement 

of SP size and distributions. 

5.2.4.1 Preliminary Statistical Aspects of Hoechst Red and Blue Signals 

The conventional representation of side populations is a 2D scatter plot along 

Hoechst Red and Blue channels; however, when each of these channels is viewed as a 

histogram, we observe side populations as decreased staining in each of these channels 

(Figure 5.5-A).  From this perspective we note several key observations with respect to 

the -FTC condition compared to the +FTC condition: 1) increased width of the 

distributions, 2) decreased population density in the regions above and immediately 

surrounding the mode of the +FTC condition, 3) increased density in the region below the 

mode but above the lower extrema of the +FTC condition which is used to define the 
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lower border of the NSP in manual gating approaches.  This last observation was critical; 

it demonstrated the lack of a clear distinction between SP and NSP cells.  Increased 

density indicated that transporter mediated efflux affects cell staining in this region.  

Cells with a SP phenotype that were differentially stained with Hoechst in the presence of 

an ABCG2 inhibitor, fell within the NSP gating regions.  Thus, the distinguishing SP and 

NSP cells with an absolute cutoff is an over-simplification. 

We sought to identify objective measures associated with Hoechst Red and Blue 

signals in order to describe the influence of ABCG2 transporter on Hoechst staining.  

Despite arising from related sources, Hoechst Red and Blue channel signals are 

nonetheless defined in arbitrary units, subject to independent adjustment of detector 

voltage settings.  To make the data more consistent, we converted Hoechst signals (raw 

data in arbitrary units) from each of the channels into Hoechst Red and Blue Scores, 

transformed values representing distance from the +FTC signal mean in units of standard 

deviation.  Therefore, the Hoechst Red and Blue Scores of the -FTC condition were 

normalized to the +FTC condition, with a mean of 0 and standard deviation of 1 for both 

Hoechst Red and Blue. 

We sought to use statistical metrics to characterize the transporter activity 

associated with the formation of the SP.  Therefore, we computed the differences of these 

Hoechst metrics between +FTC and -FTC conditions.  Further analyzing the data from 

the SP time course experiment (Figure 5.4-A), we observed a decreased Hoechst Score 

mean in both the Red and Blue channels in the -FTC condition compared to the +FTC 

condition, which correlated with the previously measured %SP (Figure 5.5-B).  

Additionally, we observed a correlated increase in differences of Red and Blue channel 
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standard deviation with SP size as well as an increase in Hoechst Red and Blue 

covariance in the -FTC condition compared to the +FTC condition (Figure 5.5-B). 

Each of the Hoechst metrics was independently able to stratify differences in SP 

size observed in the SP time course study (Figure B.2).  Using a combination of metrics 

in a multilinear model, we estimated SP size with a high degree of accuracy (Figure B.3).  

In an independent experiment, individual high and low-ABCG2 expressing cells were 

isolated and expanded to form colonies (Figure B.6-A).  Notably, both expanded colonies 

from both high and low-ABCG2 expressing cells yielded both NSP and SP populations 

(Figure B.6-B).  The multilinear model was able to predict %SP in the independent set 

with a high degree of concordance with manually assessed %SP (Figure B.6-C). 

The most informative of these metrics for predicting SP size were changes in 

Hoechst Red and Blue means as well as the change in covariance (Table B.1, B.2).  These 

observations indicate that larger side populations exhibit a correspondingly large decrease 

in Hoechst staining along the diagonal of the Hoechst Scores plot.  Indeed, the 

differences of the Hoechst Red and Blue Score means projected onto a diagonal are 

highly correlated with the measured size of the SP in the sample (Figure 5.6-A). 

5.2.4.2 Hoechst Score Projection Gating 

The differences in population level statistics for Hoechst stained conditions can be 

translated into a means to analyze cells at the single cell level.  Using Hoechst Score data 

for individual cells within a set of flow cytometry data, the Hoechst Score projection was 

calculated.  Therefore the population was converted from a 2D Hoechst Score 

representation to a 1D dataset as a projection along the diagonal of the Hoechst Scores 

plot.  We took the 1
st
 percentile mark, i.e. 99% of the population had higher staining, to 
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be the lower limit of the NSP gate in the +FTC condition.  The positioning of this gate is 

visible as the grey line in the lower left of the Hoechst Scores plot (Figure 5.6-B).  When 

applied to the -FTC condition, it was used to measure the %SP in the sample in an 

objective manner.  The size of the SP measured using the projection gating approach was 

highly consistent with our manual approach (Figure 5.6-C) and further corroborates our 

measurements of SP dynamics during time in culture and with TGFβ treatment (Figure 

5.6-D). 

5.2.4.3 Hoechst Red and Blue Score Probability Density Functions (PDFs) 

The changes in Hoechst Score metrics for the populations were indicative of the 

SP size for a population; however, we still lack a means to objectively measure 

differences in population density across conditions and samples.  To address this issue, 

we converted SP flow cytometry scatter data into 2D probability density functions 

(PDFs) along Hoechst Red and Blue standard score dimensions (Figure 5.6-B).  Unlike 

pseudo-colored scatter plots, the density (color intensity) is now scaled consistently 

across different plots.  Furthermore, PDFs were constrained to a unit volume, which 

allowed for direct comparison of population density from both +FTC (PDF+FTC) to -FTC 

(PDF-FTC) conditions and from sample to sample.  Such comparison may be visual in 

nature (scaling) or mathematical in nature. 

5.2.4.4 Visualizing Differences in PDFs Across Multiple SP Samples 

Differential cellular distribution within a population in +FTC and -FTC 

conditions is the basis for the SP assay; however, precisely how the distributions differ 

can only be appreciated at a rough scale using scatter and pseudo-colored scatter plots.  In 

converting flow cytometry samples into PDFs, we were able to measure the differences in 
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cell density between +FTC and -FTC conditions.  Taking the difference between the 

respective cell density maps, PDF-FTC – PDF+FTC, we were able to measure the 

differences in population density (∆FTC) due to transporter-mediated Hoechst efflux 

across the range of Hoechst staining (Figure 5.7-A, B.4-A).  In the ∆FTC plot, red 

regions correspond to regions with increased relative cell density in the -FTC condition 

and therefore reflect increased population density when transporter-mediated Hoechst 

efflux is uninhibited.  In contrast, blue regions correspond to regions of higher relative 

cell density in the +FTC condition and reflect decreased population density when 

transporter-mediated Hoechst efflux is uninhibited. 

The probabilistic nature of the PDFs ensures that units and scaling are consistent 

across conditions, meaning that intensity in the PDFs is in units of likelihood.  Similarly, 

∆FTC plots are expressed in non-relative units with intensity reflecting differences in 

frequency between -FTC and +FTC conditions for a given sample.  Thus, the ∆FTC plot 

reflects the level of transporter-mediated dye efflux within a given sample.  The ∆FTC 

distribution permits the comparison of transporter activity across different samples in a 

quantitative manner.  To compare such differences, we took the difference of ∆FTC 

distributions to derive a ∆SP distribution, which measured the relative differences in 

∆FTC distributions between two samples (Figure 5.7-B, B.4-B).  To calculate the ∆SP, 

the ∆FTC distribution of the control (∆FTCctrl) was subtracted from the ∆FTC 

distribution of the particular test sample (e.g. ∆FTCTGFβ).  Therefore, red regions of the 

∆SP plot are indicative of regions with higher cell density within the test sample ∆FTC 

while blue regions correspond to regions with decreased density in the test sample ∆FTC 

distribution. 



www.manaraa.com

 112 

We processed the PDFs, ∆FTC, and ∆SP distributions for the simple SP 

experiment depicted in Figure 5.1.  The PDFs for each of the conditions for both the 

control and TGFβ-treated sample are depicted in Figure 5.6.  The ∆FTC plots both 

exhibit increased cell density in the region of decreased Hoechst Red and Blue staining 

relative to the means in the +FTC conditions (i.e. below 0 in both Hoechst Red and Blue 

channels; Figure 5.8-A).  We directly compared the control and TGFβ-treated samples in 

the ∆SPTGFβ distributions (Figure 5.8-B), where it was apparent that the TGFβ-treated 

sample exhibited diminished transporter-mediated Hoechst efflux compared to the 

untreated control.  These approaches to visualizing differences in transporter activity can 

be particularly useful for comparing differences in responses across a number of 

responses, such as the Day 4 conditions from the time course experiment (Figure B.4-C). 

Our statistical approach to characterization of distributions in the SP assay 

allowed for a more objective measurement of the influence of transporter-mediated efflux 

on Hoechst staining compared to conventional approaches for measuring the %SP.  

Moreover, the metrics are continuous in nature, which do not rely on strict cutoff in 

assign “SP” or “NSP” classification to cells.  Our efforts to investigate the kinetic 

mechanisms that give rise to SP responses in cells rely on the implementation of 

objective measures, such as change in Hoechst Score Projection and changes in Hoechst 

staining distributions to identify SP responses. 
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Figure 5.5  Hoechst Staining Histograms & PDFs of +FTC & -FTC Conditions. 

Histograms of Hoechst Red (A) and Hoechst Blue (B) staining of +FTC and -FTC 

conditions for the control sample in Figure 5.1-A, consisting of 51200 cells and 50329 

cells for the +FTC and -FTC conditions, respectively.  C)  Changes in Hoechst Red and 

Blue Score statistics in -FTC vs +FTC conditions plotted against their associated %SP.  

(X = X-FTC - X+FTC; HRSmean = change in Hoechst Red Score mean, HBSmean = 

change in Hoechst Blue Score mean, HRSSD = change in Hoechst Red Score standard 

deviation, HBSSD = change in Hoechst Red Score standard deviation, HSC = change 

in Hoechst Red & Blue Score covariance).  Lines of best fit from linear regression are 

shown along with the corresponding R
2
 values for each Hoechst statistic. 
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Figure 5.6  SP PDF Plots & Projection Gating %SP Measurement. 

A)  Hoechst Red and Blue score means for each of the samples in the time course 

experiment were projected onto a diagonal (y=x).  The difference between -FTC and 

+FTC conditions are then reported as –Hproj and ploted against the respective %SP for 

the sample.  B)  Hoechst Score probability density functions (PDFs) of cell populations in 

control and TGFβ-treated samples for +FTC (PDF+FTC) and -FTC (PDF-FTC) conditions, 

corresponding to flow cytometry data in Figure 5.1-A and 5.1-B.  Hoechst Red and Blue 

Scores transformations are determined by the mean and standard deviation of the +FTC 

condition.  Hoechst Scores are expressed as units of standard deviations from the mean.  

Density colormap values are normalized to a common maximum frequency across the 4 

conditions.  SP gates (gray lines) were set at the 1
st
 percentile level using the Hoechst 

Scores projection gating approach.  C)  The projection gating approach was used to 

measure the %SP (%SPproj) in each of the samples in the time course experiment and 

plotted against the %SP measured with the manual approach.  D)  Reconstruction of the 

%SP dynamics in the time course experiment (Figure 5.4-A) using the projection gating 

approach.  Values are plotted as mean ± standard error of the mean.  Lines of best fit 

from linear regression are shown along with the corresponding R
2
 values for plots A & C.  
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Figure 5.7  Schematic of FTC & SP Calculations from PDF Distributions. 

Differences in Hoechst Score PDFs are used to compare differences between +FTC and -

FTC conditions as well as between samples.  A)  The difference between PDF-FTC and 

PDF+FTC for the control sample is represented by the FTCcontrol plot.  B)  Differences 

between FTCcontrol and FTCTGFβ are represented in the SPTGFβ plot.   
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Figure 5.8  FTC & SP Distributions of Control & TGFβ-Treated A549 Cells. 

A)  Differences in PDF density between PDF-FTC and PDF+FTC are displayed as FTC 

distribution plots for control and TGFβ-treated conditions plotted against Hoechst Red 

and Blue Scores.  B)  Differences in FTC distributions from the control sample FTC 

distribution are displayed as SP distributions for the control and TGFβ-treated samples.  

FTC and SP distributions are averaged from four replicates from the sample 

represented in Figure 5.1. 
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5.2.5 Up-Regulation of ABCG2 & SP Expansion with tBHQ Treatment 

We observed a reduction in SP size following down-regulation of ABCG2 

expression via TGFβ treatment.  In contrast, the antioxidant tert-butylhydroquinone 

(tBHQ) has been shown to induce increased expression of ABCG2. (Adachi et al., 2007)  

A549 cells were treated with 50 µM tBHQ for 48 hours and stained with an APC-labeled 

anti-ABCG2 antibody.  ABCG2 surface marker expression increased with tBHQ 

treatment upon imaging the stained cells in an imaging cytometer (Figure B.17-A). 

tBHQ-treated cells were prepared for SP analysis and imaged using an imaging cytometer 

where an increase in SP size was observed in tBHQ-treated cells (Figure B.17-B,C).   

Imaging cytometry generates data similar to flow cytometry data; however, it 

does so by collecting images of individual cells rather than through collection of light in 

photo-multiplier tubes, as is the case for flow cytometry.  In doing so, each collection 

event has a corresponding set of single-cell images containing both fluorescent and 

spatial information.  Using imaging cytometry we were able to collect images of Hoechst 

stained cells in both Hoechst Red and Blue channels along the diagonal (Figure 5.9).  In 

this series of images, the increase in Hoechst staining can be visualized as both Hoechst 

Red and Blue Scores increase.  

Imaging cytometry SP data was processed analogously to SP data obtained using 

flow cytometry (Figure B.17, 5.10-A).  The influence of transporter activity in the 

untreated control and tBHQ-treated samples from imaging cytometry data is discernible 

in the ∆FTCcontrol and ∆FTCtBHQ plots in Figure 5.10-A.  The increase in SP size in the 

tBHQ sample compared to the untreated control sample is apparent in the red regions of 
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the ∆SPtBHQ plot.  The difference of transporter influence on Hoechst staining is reflected 

in the increased -∆Hproj in tBHQ-treated samples compared to control (Figure 5.10-B). 

 

 

 

 

 

Figure 5.9  Imaging Cytometry Visualization of Cells along the Projection. 

Image of Hoechst stained cells from imaging cytometry of A549 cells without FTC.  

Cells were selected at random along the Hoechst Scores diagonal, corresponding to the 

path of the hoechst projection (A).  Numbers correspond to event number ID values.  B)  

Imaging cytometry data channels used in the SP assay.  
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Figure 5.10  FTC & SP Distributions of Control & tBHQ-Treated A549 Cells. 

A)  Differences in PDF density between PDF-FTC and PDF+FTC are displayed as FTC 

distribution plots for control and tBHQ-treated conditions plotted against Hoechst Red 

and Blue Scores.  Differences in FTC distributions from the control sample FTC 

distribution are displayed as SP distributions for the control and tBHQ-treated samples.  

FTC and SP distributions are averaged from three replicates.  B)  The magnitude of 

the SP response in control and tBHQ-treated samples are reported as the –∆Hproj.  Values 

are plotted as the mean ± standard error of the mean of three biological replicates.   
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5.2.6 Multiscale Ensemble Modeling of Side Population Responses 

5.2.6.1 Ensemble Modeling Approach 

The SP assay is designed to recognize Hoechst staining heterogeneity with a cell 

population.  Additionally, it is a kinetic assay in that it results from the staining of cells 

with a dye that is transported through the cell and subject to differential transport and 

retention in a single cell context due to variation in cell size, transporter expression, and 

availability of DNA, which it strongly binds.  Therefore, we designed our approach to, as 

faithfully as possible, recapitulate the variability in the Hoechst transport landscape 

expressed within a cell population.  To do so, we derived population distributions from 

A549 cells, which were then converted into probability density functions and sampled to 

generate the in silico cell population (Figure 5.11-A). 

We considered 3 experimental models of differing transporter distributions within 

the cell population.  Model 1 exhibits a distribution of transporter number throughout the 

population, though with equal concentration.  Model 2 exhibits a distribution of 

concentration throughout the population, though with equal transporter numbers.  Finally, 

Model 3 has transporter distributions throughout the populations that are drawn from 

experimental ABCG2 expression distributions. 

Each of the transporter distribution models shared a common kinetic model of 

Hoechst staining, which was modeled with mass-action kinetics governing rates of 

reaction (Figure 5.11-B).  The reaction rates in this kinetic model are lumped parameters, 

meaning that the reactions depicted in the kinetic model correspond to a series or 

collection of true biochemical reactions.  Such parameters are ill defined and can differ 

depending on the particular cellular context.  Therefore, rather than focusing on finding a 
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parameter set that optimizes our output behavior of interest, we sought to examine the 

ability of particular transporter distributions to exhibit SP responses across a wide range 

of kinetic parameter space.  We used Latin hypercube sampling (LHS) of parameter 

space to ensure that the kinetic diversity within the parameter space was sampled as 

uniformly as possible for the given number of parameters simulated (M=10,000; Figure 

5.11-A). 

We assessed SP responses by conversion of Hoechst staining concentrations that 

resulted from single-cell kinetic simulations.  This process of in silico flow cytometry 

was used to generate Hoechst Red and Blue signals (Figure 5.11-C).  The simulated flow 

cytometry data was then processed in an identical manner as experimental flow 

cytometry data from SP assays by converting Hoechst signals into Hoechst Scores, PDFs, 

∆FTC, and ∆SP distributions (Figure 5.11-D,E).  Finally, the simulated Hoechst staining 

of the 4 transporter levels in both inhibited and un-inhibited conditions were analyzed for 

a SP response based on correlation of simulated Hoechst staining metrics with analogous 

metrics from experimental SP distributions from Day 4 of the SP time course (Figure 5.4, 

5.5, and B.4-C).  When the metrics of a particular ensemble is in agreement with each of 

the experimental metrics, the response is determined to be SP-like and the SP response is 

then ranked according to similarity to experimentally observed %SP.  

We define an ensemble as a particular pairing of a kinetic parameter set with a 

cell population in the context of a transporter distribution model.  An ensemble is 

distinguished from a kinetic parameter set as the biological subject of interest 

(heterogeneity of Hoechst staining) is observable only at the population level and a given 

kinetic parameter set within a completely homogeneous cell population would exhibit no 
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staining heterogeneity.  Therefore, the in silico response heterogeneity is a function both 

of the heterogeneity inherent to a cell population and of kinetic process that govern the 

staining dynamics.  A given set of kinetic parameters will exhibit variability in transport 

rates throughout a population due to the variability in the population of factors that 

influence transport, such as volumes, surface areas, and transporter concentrations.  Thus, 

we differentiate an ensemble from a set of kinetic parameters by recognizing the context 

in which it operates and leads to population-level effects. 

Ensembles that led to SP responses were then further analyzed at the single-cell 

level.  The SP responses of individual cells were measured across a population to obtain a 

SP response distribution.  The heterogeneity of the response distribution was measured 

for each population.  Finally, the range of response heterogeneity was compared across 

each of the models.  This approach was designed to permit the comparison of different 

modes of transporter heterogeneity within a population to the types of Hoechst staining 

responses that might be observed in a SP assay.  First, we wanted to determine whether a 

simple kinetic model of transporter-mediated Hoechst efflux in the context of population 

heterogeneity was consistent with the simple conceptual model that underlies our 

understanding of the mechanisms in action in the SP assay.  Second, we wanted to 

identify the types of single-cell behaviors that give rise to a SP within a population.  

Finally, we hoped that this approach would increase our understanding of what, from a 

transporter activity standpoint, it means to be a SP or a NSP cell.  
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Figure 5.11  Multiscale Ensemble Approach to Modeling SP Responses. 

Our approach to modeling side population response kinetics proceeded in a sequential 

manner.  A)  First, a heterogeneous in silico cell population was generated from 

experimental distributions, which was then paired with each of the kinetic parameter sets 

that were derived from Latin hypercube sampling of parameter space.  Three different 

models were implemented, each with differing transporter heterogeneity within a given 

population.  The cell population was implemented in 4 different transporter-variant 
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versions, where relative transporter expression was derived from experimental data.  An 

ensemble is a pairing of a particular parameter set with the variety of populations for 

which it is simulated.  B)  For each ensemble, each of the 4 transporter-variant 

populations were underwent simulated Hoechst staining at the single-cell level both with 

and without transporter inhibition.  C)  The Hoechst concentrations following kinetic 

staining simulation were converted into Hoechst Red and Blue signals using a linear 

transformation that incorporates spectral excitation and emission properties of simulated 

Hoechst dye and flow cytometers.  D)  In silico flow cytometry signals were converted 

into Hoechst Scores and Hoechst Score PDFs.  Projection gating objectively assess SP 

size.  E)  Hoechst Score PDFs were used to measure ∆FTC and ∆SP distributions.  F)  

Hoechst staining metrics of Scores, PDFs, ∆FTC, and ∆SP were used to identify models 

exhibiting SP responses.  Ensembles meeting qualitative selection criteria are then scored 

according to their similarity in %SP to experimental data.  G)  The distribution of side 

population responses of individual cells within a population is analyzed for each of the 

ensembles passing qualitative selection. 
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5.2.6.2 Side Population Responses In silico 

Each of the models in consideration yielded ensembles that met all of the 

selection criteria for the recognition of a SP response on the order of ~1%.  Hoechst 

staining simulation results were visualized in analogous Hoechst Red and Hoechst Blue 

Scores PDF plots as experimental Hoechst stains (Figure 5.12-B).  Likewise, projection 

gating was used to measure %SP, for which were compared for fit against experimental 

data (Figure 5.12-C).  In silico flow cytometry data was further visualized by calculating 

the ∆FTC and ∆SP distributions (Figure 5.12-D). 

The ensemble responses appeared to exhibit two types of SP responses.  1)  The 

population mode changed little and an outgrowth of population density appears in the SP 

gate in the uninhibited condition (Figure 5.12).  The size of the side population was a 

function of the size of the outgrowth.  We describe this scenario as a Subpopulation Type 

response.  2)  The population as a whole underwent a shift into the SP gate (Figure 5.13).  

The size of the SP was a function of the size of the population displacement.  We 

describe this scenario as a Full Type response.  Both types of responses passed our 

selection criteria for identifying SP and were able to achieve RMSE values > 0.  This 

indicates that the cell density is increased in the SP gate in the uninhibited condition 

compared to the inhibited condition and that the differences between different transporter 

samples is stratified with the 0 pM TGFβ condition exhibiting the largest SP.  However, 

the two response types appear to achieve this by different means.  
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Figure 5.12  In silico Flow Cytometry Results of Subpopulation Type Response. 

In silico flow cytometry SP plots from an ensemble from Model 3.  A)  Schematic 

representation of the distribution of single-cell SP responses in a Subpopulation Type 

response.  B)  Hoechst Scores PDF+FTC and PDF-FTC plots for different transporter 

distribution samples drawn from 0, 1, 10, and 100 pM TGFβ  experimental conditions.  

Projection gating (gray line) was used to measure the %SP.  C) %SP from the ensemble 

is compared to the means of experimental conditions.  D)  Differences in PDF-FTC and 

PDF+FTC distributions from A are shown as ∆FTC for each transporter sample.  

Differences in ∆FTC distributions from the 0 pM sample are displayed as ∆SP 

distributions. 
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Figure 5.13  In silico Flow Cytometry Results of Full Population Type Response. 

In silico flow cytometry SP plots from an ensemble from Model 2.  A)  Schematic 

representation of the distribution of single-cell SP responses in a Full Type response.  B)  

Hoechst Scores PDF+FTC and PDF-FTC plots for different transporter samples whose 

means were drawn from 0, 1, 10, and 100 pM TGFβ  experimental conditions.  Projection 

gating (gray line) was used to measure the %SP.  C) %SP from the ensemble is compared 

to the means of experimental conditions.  D)  Differences in PDF-FTC and PDF+FTC 

distributions from A are shown as ∆FTC for each transporter sample.  Differences in 

∆FTC distributions from the 0 pM sample are displayed as ∆SP distributions. 
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5.2.6.3 In silico Single-Cell Analysis of Side Population Responses 

Our computational approach to investigation of SP formation enabled us to 

visualize transporter activity at the single-cell level in a way that no experimental 

approach could achieve.  Identical cells, with the exception of transporter activity, were 

simulated in the inhibited (+FTC) and uninhibited (-FTC) conditions.  This was the case 

for every cell within each sample population.  This approach enabled us to examine the 

impact of transporter inhibition on Hoechst staining on otherwise identical populations.  

Using the Hoechst Score Projection (Hproj) values for each cell, which is used to set the 

SP gate in the projection gating approach, we were able to interrogate SP responses at the 

single-cell level. 

In the plot of Hproj staining without inhibition (Hproj-FTC) against Hproj staining 

with inhibition (Hproj+FTC), the SP and NSP gating of each individual cell is visualized 

for the inhibited and uninhibited conditions (Figure 5.14-A).  For example, a cell in the 

NSPNSP gate would be gated as a NSP cell in both conditions.  The NSPSP gate 

contains cells that would be NSP gated cells in the +FTC condition but SP cells in the -

FTC condition.  These are the cells that would be considered SP in the context of the SP 

assay.  In knowing the Hproj+FTC and Hproj+FTC values for each cell, we can calculate 

the difference in Hoechst staining along the projection for each individual cell, much as 

we had at the population level (Figure 5.6), where -∆Hproj = -(Hproj-FTC - Hproj+FTC) and 

a larger -∆Hproj corresponds to a larger SP response at the single-cell level. 

Within the Subpopulation Type response, some cells exhibited identical 

Hproj+FTC and Hproj-FTC staining (non-differential staining), which is visualized as the 

line of cells along the y=x diagonal, while others exhibited differential staining, including 
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cell that were gated as SP cells and cells gates as NSP cells in the -FTC condition (Figure 

5.14-A).  Within the Full Type response, each of the cells exhibited differential staining.  

The differences in Hproj-FTC and Hproj-FTC were readily observed in -∆Hproj plots.  

In the plot of -∆Hproj against transporter number (Figure 5.14-B), we observed non-

differential staining at low transporter numbers and increasingly differential staining 

potential at higher transporter numbers for the Subpopulation Type response.  In the Full 

Type response, which was selected from Model 2 where each cell within the population 

has an identical transporter number, the entire population exhibited differential staining.  

In the plot of -∆Hproj against Hproj+FTC, the magnitude of SP response is plotted 

as a function of the degree of staining in the inhibited condition.  In the Subpopulation 

Type response, we observed larger differential staining potential associated with larger 

Hproj+FTC values (Figure 5.14-C); however, non-differential staining cells were observed 

along the entirety of the Hproj+FTC range.  A similar covariant trend was observed for the 

Full Type response, though with the absence of non-differential staining cells.  SP 

response magnitude is shown for SP and NSP cells in the plot of -∆Hproj against Hproj-

FTC.  In the Subpopulation Type response, we observed SP cells have, in general, the 

largest differential staining (Figure 5.14-D).  In contrast, SP cells in the Full Type 

response have, relative to the NSP cells, the smallest differential staining. 

5.2.6.4 Side Population Response Profiles of Individual Populations 

The single-cell SP responses of the Subpopulation Type response indicate there 

are two varieties of response, a non-differential response that is unaffected by transporter 

inhibition and differential staining cells, in which the largest differential staining cells are 
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SP cells.  In contrast, the Full Type response is composed of exclusively differentially 

staining cells, the smallest of which constitute the SP. 

The diversity of single-cell SP response within a single population is represented 

as a histogram of the -∆Hproj responses.  In the Subpopulation Type response (Figure 

5.15-A), the most frequent -∆Hproj value was 0, the non-differential staining cells.  A tail 

extending from the non-differential staining cells in the positive direction represents the 

differential staining cells.  This tail gave the distribution a positive standard skew.  

Samples with larger tails correspond to samples with a larger SP.  

The SP response distribution of the Full Type response was noticeably different 

from the Subpopulation Type (Figure 5.15-B).  In each sample, all of the cells were 

differentially staining and has roughly even tails on either side of the distribution, which 

resulted in a standard skewness near 0.  Greater differential staining of the sample 

population corresponded with larger sample SP. 

The distributions of single-cell SP responses can be further characterized by a 

bimodality coefficient, which is derived from the standard skewness and standard 

kurtosis of the distribution.  A larger bimodality coefficient, with a maximum of 1, 

reflects a greater similarity to a pure binomial distribution while a smaller coefficient, 

with a minimum of 0, reflects a greater similarity to a distribution with a singular value.  

The Subpopulation-Type response in Figure 5.15 has a bimodality coefficient of ~0.8 

while the Full Type response is ~0.33, which is similar to that of a normal distribution.  

The Subpopulation Type response can be thought of as the union of two distributions, a 

narrow one centered near 0 and a smaller, wide distribution on the positive side of the 

first.   
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Figure 5.14  Single-Cell Analysis of Hoechst Projections & -∆Hproj. 

In silico single-cell Hoechst Projection plots for the 0 pM TGFβ  sample for a 

Subpopulation Type and a Full Type response.  A)  Hoechst Score Projections in the 

uninhibited condition (Hproj-FTC) are plotted against Hoechst Score Projections in the 

inhibited condition (Hproj+FTC).  B)  The change in Hoechst Score Projection (-∆Hproj) is 

plotted as a function of number of transporters per cell.  C) -∆Hproj is plotted as a function 

of Hoechst Score Projection in the inhibited condition (Hproj+FTC).  D) -∆Hproj is plotted 

as a function of Hoechst Score Projection in the uninhibited condition (Hproj-FTC).  

Complete overviews for each transporter sample for each plot are depicted in (Figure 

B.12 and B.13).  
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Figure 5.15  Distributions of -∆Hproj for Subpopulation and Full Response Types. 

The -∆Hproj of cells in each transporter sample population of an ensemble is displayed in 

a histogram for a Subpopulation Type (A) and a Full Type Response (B).  The standard 

skewness (S), excess standard kurtosis (k), and bimodality coefficient (B) is listed in the 

upper right-hand corner for each distribution. 
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5.2.6.5 Side Population Response Profiles by Transporter Distribution/Model 

Each of the ensembles exhibiting a SP response did so within the confines of 

different and diverse sets of kinetic parameters (Figure B.11).  As such, the single-cell SP 

response distributions varied from ensemble to ensemble.  To obtain a more complete 

understanding of the forms of SP response distributions that give rise to SP responses, we 

plotted the bimodality coefficient against standard skewness for each of the SP-producing 

ensembles with RSME fits greater than 0 (Figure 5.16-A).  The Subpopulation Type 

response maps to the upper right-hand corner of the plot while the Full-Type response 

maps near the center.  The mapping of a number of example distributions helps identify 

the types of distributions associated with various regions of the map (Figure 5.16-B).  A 

more comprehensive example map can be found in (Figure B.14). 

In general, we observed ensembles from the transporter number (Model 1) and 

concentration (Model 2) models to resemble a relatively wide normal distribution with a 

slight positive skew (Figure 5.16-A).  Model 3, employing transporter expression from 

experimentally derived distributions and permitting non-linear scaling of activity, 

exhibited a more diverse set of ensemble responses, though they were more skewed and 

had a larger bimodality coefficient than those observed in Model 1 or 2 (Figure 5.16-A).  

Furthermore, Model 3 achieved better fits, larger RMSE, than Model 1 or 2 with larger 

standard skewness and bimodality coefficient values (Figure B.15).  

  



www.manaraa.com

 134 

 

 

 

 

Figure 5.16  SP Response Distribution Map of SP-Producing Ensembles 

A)  The single-cell SP response (-∆Hproj) distribution of each of the ensembles exhibiting 

a SP and having an RMSE > 0 for each model is depicted by its standard skewness and 

bimodality coefficient.  Mappings of the previously described Subpopulation Type and 

Full Type (Figure 5.12, 5.13, 5.14, and 5.15) responses are indicated by the arrows.  B)  

Example distributions are depicted along with representations of the range single-cell SP 

responses in an example cell population.  Lower case letters correspond to positioning on 

the Response Distribution Map (A). 
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5.3 Discussion 

Enhanced efflux of cytotoxic agents by cells possessing a MDR phenotype is 

thought to underlie the mechanism of cell survival and resistance to some 

chemotherapeutics.  The decreased staining of a side population of cells in the SP assay is 

interpreted as an indicator or enhanced transporter-mediated efflux capacity in these cells 

relative to the other cells in the sample.  Though SP cells and the SP are referenced in a 

manner that suggests they have discrete identities, SP identity is not an immutable 

property.  

A key observation from this study is the plasticity exhibited in the SP/NSP 

phenotype. For example, the size of a SP for a given cell line is not a fixed value; rather it 

changes with time in culture (Figure 5.4-A).  Furthermore, both SP and NSP cells arise 

from single-sorted cells in both low- and high-ABCG2 populations (Figure B.6-B). As 

indicated preciously, the ABCG2 transporter activities of the cells cannot be fully 

determined. If the cells had been sorted by SP assay, they would have been identified as 

either SP or NSP cells. Thus, identification as SP or NSP cell does not restrict subsequent 

progeny to SP or NSP fates.  However, technical limitations still prevent direct 

measurement of ABCG2 activity at the single-cell level, thus we cannot determine 

whether the binary presence or absence of ABCG2 activity phenotypes collectively or 

individually give rise to populations possessing both side and non-side populations.  We 

argue that rather than lineagedetermining inheritance of SP/NSP phenotype, the 

heterogeneity of transporter expression gives rise to low- and high-transporter activity. 

The manifestation of this plasticity has major implications for those developing strategies 
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to suppress the role of MDR phenotypes in the development of chemotherapeutic 

resistance.  

SP activity in a population is inextricably linked to activity of the ABCG2 

transporter, with higher expression levels of ABGC2 measured in SP compared to NSP. 

(Petriz, 2013)  However, due to the destructive nature of the SP assay, the differential 

staining of cells in the assay (with and without inhibition) cannot be performed on the 

same cell. Thus, associations between ABCG2 and SP-type responses exist only at a 

population level.  Assumed in the simplified conceptual model for the SP assay  (Figure 

5.2-B) is that SP cells have higher ABCG2 activity compared to NSP cells. However, 

staining of SP and NSP cells falls along a continuum with considerable overlap (Figure 

5.5-A), such than binary assignment of SP/NSP identity is non-trivial and suggesting that 

ABCG2 activity in SP and NSP cells is not categorically binary.  

In our study, we developed objective approaches to characterize SP assay data 

and developed a novel computational approach to investigate the role of single-cell 

kinetic mechanisms of transporter-mediated efflux on population-level responses.  Of the 

models of transporter activity heterogeneity, the Subpopulation Type response best 

approximated the experimental data (Figure B.15) and exhibited responses most 

consistent with those observed experimentally with a distinct subpopulation that extends 

as a tail into lower Hoechst Red and Blue intensity regions (Figure 5.12-B,D). (Akunuru 

et al., 2012; 2011; Liu et al., 2014; Sabisz and Skladanowski, 2009; Sung et al., 2008; 

Tirino et al., 2013; Yeh et al., 2013)  In the Subpopulation Type response, the staining of 

the majority of the cell population is little affected by transporter inhibition while the 

staining of a subpopulation is greatly diminished with transporter inhibition (Figure 5.15-
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A).  Using our approach, we were able to subject identical cells to an in silico SP assay, 

allowing direct relation of the degree of differential staining to the transporter activity on 

a single-cell level. From this, we observed that not all SP cells have high levels of 

transporter activity and not all NSP cells have low transporter activity (Figure 5.14-D).  It 

can be the case that a cell has a low degree of basal staining (+FTC condition) and that 

even a little transporter activity permits gating of the cell in the SP region (-FTC 

condition). Likewise, a cell may have a high degree of basal staining and even with high 

transporter activity is not sufficient to permit gating of the cell in the SP region.  Thus, 

referring to SP cells as high-ABCG2 activity cells and NSP cells as low-ABCG2 activity 

cells may be accurate as an average across these subpopulations; however, doing so fails 

to capture the heterogeneity of activity within these subpopulations. Such mechanisms 

may partially explain the discrepancies in the literature regarding the increased 

propensity but non-equivalence of SP cells with stem-like qualities and tumorigenic 

potential. (Broadley et al., 2011; Burkert et al., 2008; Li and Laterra, 2012; Lichtenauer et 

al., 2008; Morita et al., 2006)  These considerations are critical when attempting to use 

SP assay data as a surrogate for ABCG2 activity or MDR phenotype on a single-cell 

level. 

A key element of the Subpopulation Type response is the non-linear association 

between transporter expression and transporter activity. Only a modest increase in 

transporter activity is associated with increasing expression at low and moderate levels; 

however, at the higher range of expression, small increases in expression are associated 

with dramatic increases in transporter activity levels.  The biochemical basis for the non-

linear relationship between transporter expression and activity levels may arise from the 
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biochemical properties of ABCG2.  ABCG2 functions within multi-meric complexes and 

has been observed in complexes as homo-tetramers (McDevitt et al., 2006; Xu et al., 

2004) and 12-mers. (Xu et al., 2007)  At least three structural domains within ABCG2 are 

sufficient for oligimerization of ABCG2. (Mo and Zhang, 2012)  Further, ABCG2 

possesses multiple substrate binding sites, which exhibit cooperative binding of substrate. 

(Clark et al., 2006)  Therefore, elevated ABCG2 expression levels in a population may be 

indicative of a population that possess the potential for exhibiting a MDR phenotype but 

through a select subset with the highest levels of expression and activity. Validation of 

such a mechanism may permit therapeutic approaches that aim to normalize transporter 

expression across the population to sub-MDR levels by targeting the highest expressing 

cells rather than by depressing transporter expression across the entire population. 

In addition to the findings relating to SP dynamics and kinetic mechanisms that 

can generate SP responses, we have, in our investigation, developed a number of novel 

technical approaches to objectively measuring SP properties and modeling population-

level responses due to single-cell heterogeneity.  

Measurement of the SP has traditionally achieved through manual gating 

practices, comparing the +FTC and –FTC conditions to define boundaries to segregate SP 

and NSP regions. (Petriz, 2013)  Such user-defined gate methods for assigning SP and 

NSP gates are highly varied. (Akunuru et al., 2012; 2011; Liu et al., 2014; Sabisz and 

Skladanowski, 2009; Sung et al., 2008; Tirino et al., 2013; Yeh et al., 2013)  Approaches 

such as this are subjective and not without bias, making them difficult to reliably 

reproduce in different samples and investigations.  We observed correlation between 

objective measures of Hoechst staining and SP size (Figure 5.5-C, Figure 5.6-A), which 
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served as the basis for our approach for unbiased measurement of side population size as 

%SP using Projection Gating.  

Finally, we developed an ensemble computational approach (Figure 5.11) that 

enabled us direct measurements of the influences of heterogeneity in single-cell 

transporter activity on cell staining in an in silico fashion. This circumvented the 

destructive nature of the SP assay and permitted direct comparison of population-level 

responses of conditions that only varied by presence or absence of transporter inhibition.  

We achieved this by constructing a heterogeneous collection of individual cells whose 

properties were derived from experimental data and stained in silico according to mass-

action kinetic simulations with conditions of free and inhibited transporter.  The strength 

of this approach is that it permits comparison of controlled conditions that would be 

impossible to achieve in an experimental setting, and enables the study of heterogeneity 

of the single-cell response on the emergence of population-level properties. With the 

emergence of increasingly sophisticated tools for single-cell investigation, this type of 

modeling approach spans multiple biologic scales in a manner that places single-cell 

heterogeneity into a broader context as might occur in pathologic processes, such as 

chemotherapeutic resistance.  
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5.4 Conclusions 

We paired experimental and computational tools to investigate the role of 

transporter heterogeneity at the single-cell level on the emergence of a population level-

property, the SP, in the context of TGFβ-mediated EMT, which was found to modulate 

SP size.  In a time course study, we characterized the variable dynamics of size and 

differential staining magnitude of SPs.  A549 cells were found to have a ~20% SP after 4 

days in culture, which decreased to ~1% the next day, following passage, before 

returning to ~20% in a cyclic manner.  SP size was correlated with ABCG2 expression, 

which was down-regulated by the addition of TGFβ, leading to attenuation of SP size.  

Larger SPs were found to exhibit higher degrees of differential Hoechst staining and 

statistical methods were applied to Hoechst staining signals to objectively quantify SP 

size and visualize differences is SP densities.  We developed a multiscale computational 

model of SP responses in which ensembles of TGFβ-treated single-cell populations were 

simulated in SP assays and analyzed using an in silico flow cytometry approach to 

measure SPs.  SPs were quantified using the nascent statistical approaches and used to 

judge ensemble quality.  Each ensemble represented a unique kinetic schema for Hoechst 

staining and exhibited an associated single-cell SP response distribution.  The best 

performing ensembles exhibited a characteristic single-cell SP response distribution in 

which the majority of cells exhibited little to no differential Hoechst staining in the SP 

assay while an active minority exhibited differential staining.  Such a low frequency, high 

activity subpopulation may be functionally poised to overcome a cytotoxic insult that is 

sufficient to kill the high frequency, low activity main population, thereby establishing a 

drug resistant cell line.   
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5.5 Materials & Methods 

5.5.1 Cell Culture & Treatment 

A549 lung carcinoma cells were obtained from American Type Culture Collection 

(ATCC; CCL-185) and maintained in growth media, consisting of high glucose DMEM 

with L-glutamine (Sigma D5796), 10% FBS (Sigma F4135) and penicillin (50 IU/ml)-

streptomycin (50 µg/ml) (Cellgro 30-001-CI).  Cells were plated in flasks at density of 

3,000 cells per well in growth media (15 ml per T-75/35 ml per T-175) and maintained at 

37˚C and supplemented with 5% CO2.  TGFβ (Millipore, GF111) and tBHQ (ACROS  

Organics, tert-butylhydroquinone, AC15082) treatment took place in culture media.  

5.5.2 Side Population Assay 

Cells were trypsinized and resuspended in CO2 conditioned DMEM+, consisting 

of high-glucose DMEM without phenol red, 10 mM HEPES, 2% FBS, and 2 mM EDTA, 

at a concentration of 1x106 cells/ml.  Samples were then split into +FTC and -FTC 

conditions, which were supplemented with DMSO-mobilized FTC (EMD Millipore, 

344847) at a final concentration of 10 µM or DMSO alone, respectively.  The solutions 

were incubated at 37˚C for 30 minutes, after which they were supplemented with Hoechst 

33342 (Life Technologies Molecular Probes H21492) at a final concentration of 5 µM for 

90 minutes, with mixing at 30-minute intervals.  The staining solutions were then 

centrifuged at 1,000 RCF for 10 minutes and resuspended in HBSS+, consisting of HBSS 

without phenol red, 10 mM HEPES, 2% FBS, and 10 mM EDTA.  Cells were incubate 

with the viability stain SYTOX blue (Life Technologies Molecular Probes S34857, 

1:1000) for 5 minutes prior to fluorescence measurement via flow cytometry.  Positive 

controls for dead cell staining were obtained by incubating cells at 56˚C for 45 minutes 
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followed by SYTOX Blue staining.  Using a BD LSR II flow cytometer, samples were 

excited with a 355 nm UV laser with the Hoechst Red signal measured in a λem = 675/50 

nm channel with linear scaling and the Hoechst Blue signal measured in a λem = 450/50 

nm channel with linear scaling.  Additionally, samples were excited with a 445 nm violet 

laser with SYTOX blue emission measured in a λem = 473/10 nm channel with log 

scaling.  Sample gating proceeded as follows: 1)  Debris exclusion with FSC-area/SSC-

area (λex = 488 nm) gating, 2)  Single-cell selection with FSC-height/FSC-area, 3)  Live 

cell selection with the violet-λem = 473/10 nm channel.  Events retained through all 3 

gates were used for subsequent SP analysis in the Hoechst Red and Blue channels.  

Manual selection of SP gates were determined using the +FTC conditions where a 

quadrant gate was placed as tight as possible such that greater than 99% of the cells in the 

+FTC condition were located in the upper right quadrant.  The same gates were then 

applied to the -FTC condition where the two left gates were considered to be SP gates 

and the right two gates considered to be NSP gates.  The measured %SP in the manual 

gating approach is the sum of the percent of parent population in the SP gates.  For a 

given sample, the %SP was determined using the specific +FTC and -FTC conditions for 

that sample. 

5.5.3 Surface Marker Analysis 

Following 4 days of TGFβ treatment, surface marker expression of A549 cells 

was analyzed by flow cytometry following dissociation from culture flasks using non-

enzymatic means.  Following treatment, cells were dissociated with Enzyme Free 

Dissociation Solution (Millipore S-004-B) and resuspended in DMEM without phenol 

red supplemented with 2% fetal bovine serum, 10 mM EDTA, and 10 mM EGTA.  The 
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cells were then pelleted (1000 RCF, 10 minutes) and resuspended at a concentration of 

1x107 cells per ml in HBSS without phenol red, Ca2+, & Mg2+ supplemented with 1 mM 

HEPES, 2% fetal bovine serum, 1 mM EDTA, and 1 mM EGTA.  The cell solution was 

added to an equal volume of antibody staining solution and incubated for 30 minutes on 

ice with gentle rotation.  Antibody solutions (E-cadherin/PE-CF594, BD Biosciences, 

Clone 67A4, 2x dilution; N-cadherin/PE, BD Biosciences, Clone 8C11, 2x dilution; 

ABCG2/APC, BioLegend, Clone 5D3, 2x dilution) were prepared in the aforementioned 

HBSS solution.  Following incubation, cells were washed and resuspended in the HBSS 

solution.  Next the solutions were stained with SYTOX Blue to select for live cells.  A 

BD LSR II flow cytometer was used to analyze fluorescence of the stained cells with the 

following settings: FSC/SSC (λex = 488 nm), PE (λex = 488 nm, λem = 575/26 nm), PE-

C594 (λex = 488 nm, λem = 610/20 nm), APC (λex = 633 nm, λem = 660/20 nm), SYTOX 

Blue (λex = 445 nm, λem = 473/10 nm).  Unstained and singly stained samples were 

prepared and used for compensation matrix calculations within FlowJo on each day of 

data collection.  The following gating strategy was employed: debris exclusion 

(FSC/SSC), single events (FSC-H/FSC-A), and live cells (SYTOX Blue).  Upon gating 

for single, live-cell events, fluorescence intensities were measured as the geometric mean 

fluorescence. 

5.5.4 Single-Cell Sorting & Expansion 

To sort single-cells for clonal expansion, the A549 parent cell line was expanded 

in culture for 4 days following passage and prepared for ABCG2 surface marker staining 

as indicated previously.  Live cell selection took place with SYTOX Green (Life 

Technologies Molecular Probes S7020, 1:10,000).  Samples were then processed and 
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sorted in a BD FACS Aria IIIu.  Gates in the upper and lower 5% of the APC channel 

were defined to select low-ABCG2 and high-ABCG2 stained cells.  Individual cells were 

sorted into wells of a 96-well plate, containing 200 µl of growth media.  Cells were 

expanded in culture over the course of 30 days in growth media. 

5.5.5 Hoechst Score Processing of SP Data 

5.5.5.1 Hoechst Score Transformations 

Side population flow cytometry data for a particular sample consists of individual 

events with associated Hoechst Red and Blue signals for both +FTC and -FTC 

conditions.  The Hoechst Red and Blue signals are expressed in independent arbitrary 

units.  To generalize the interpretation of side populations from Hoechst signals, 

independent of raw signal units, Hoechst signals were converted into Hoechst Scores.  

Hoechst Scores are based upon the standard score, or z-score, in which a distribution is 

mean centered and normalized to the standard deviation.  To compute the Hoechst Score 

for the Hoechst Red channel, the mean and standard deviation of the Hoechst Red signal 

from the +FTC condition were calculated.  Next, the +FTC Hoechst Red mean was 

subtracted from the Hoechst Red signals from each of the events in the +FTC and -FTC 

conditions.  Similarly, each event in the +FTC and -FTC conditions were divided by the 

standard deviation from the +FTC condition.  The resulting event data, +FTC mean 

centered and +FTC standard deviation normalized, constituted the Hoechst Red Scores 

for the two conditions.  Hoechst Blue Scores were derived in an analogous fashion.  

Hoechst Scores were calculated at a per sample basis between each pairing of +FTC and -

FTC condition data. 
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5.5.5.2 Projection Gating for %SP Measurement 

Hoechst Scores Projections were derived from Hoechst Red and Blue Scores.  

Projections were derived from Score data and not signal data due to the arbitrariness of 

signal magnitude in the signal data.  Score data from Hoechst Red (HRS) and Blue (HBS) 

channels have common units and relative magnitudes.  Projection values were derived for 

each event within a sample, in which the Hoechst Score Projection (Hproj) was defined: 

𝐻𝑝𝑟𝑜𝑗 =  
𝐻𝑅𝑆 + 𝐻𝐵𝑆

|𝐻𝑅𝑆 + 𝐻𝐵𝑆|
√

1

2
(𝐻𝑅𝑆 + 𝐻𝐵𝑆)2 

Hoechst Projections were used to set a threshold, or gate, intensity at the lower 

limit of the NSP.  The 1
st
 percentile mark of the Hoechst Projection data from the +FTC 

condition was used define the threshold and applied to the -FTC condition.  The percent 

of events falling below the threshold in the -FTC condition was set as the %SP in this 

projection gating approach. 

5.5.5.3 Hoechst Scores PDF Distributions 

For a given Hoechst condition (+FTC or -FTC), Hoechst Red and Blue scores 

were provided transformed into a 2D probability density function (PDF) on the Hoechst 

Red and Hoechst Blue plane with the frequency, or cell density, defined at each paired 

Hoechst Red and Blue coordinate.  Smoothed surfaces over the Hoechst Red and Blue 

plane were derived by the method for smoothing scatter plot data described by Eilers et 

al. (Eilers and Goeman, 2004)  Next, the area under the surface was calculated and 

normalized to 1 for each condition.  

In its most basic form, flow cytometry data is a set of coordinate data/scatter, with 

each event represented by an intensity value along each of the measured dimensions.  
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Comparison of data between two sets relies on the comparison of some sort of statistical 

transformation of the data (i.e. mean or median).  However, such transformations result in 

loss of spatial information.  Histograms allow for comparison of spatial information, but 

differences in event number complicate interpretations.  In order to permit more rigorous 

comparisons, we converted Hoechst staining coordinate data into probability density 

functions along both Hoechst Red and Blue Score dimensions.  This was similar, in 

effect, to constructing a 2D histogram with smoothing and normalization to account for 

differences in event number between data sets.  In this format, spatial differences in 

staining distributions can easily be computed by taking the difference between PDFs. 

 

5.5.5.4 ∆FTC Distributions 

For a given sample, a ∆FTC distribution was calculated by taking the point-wise 

difference between the PDF of the -FTC condition (PDF-FTC) and PDF+FTC across the 

Hoechst Red and Blue plane to calculate the difference in normalized cell density. 

5.5.5.5 ∆SP Distributions 

To compare the difference between ∆FTC distributions between two samples we 

calculated a ∆SP distribution.  To compare a test sample to a control sample the ∆SP was 

derived as ∆FTCtest - ∆FTCcontrol, where the point-wise difference in ∆FTC intensities was 

calculated at each Hoechst Red and Blue pair.  
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5.5.6 Flow Sight Imaging Cytometer 

5.5.6.1 Data Acquisition  

Samples were imaged at 20X magnification using a FlowSight with the 

Quantitative Imaging Upgrade (Amnis, Seattle, WA).  Single color controls were used to 

set-up compensation matrices.  For the SP assay, the compensation matrix was manually 

edited to allow collection of the Hoescht Blue (470/35 nm) and Red (694/51 nm) signals 

using the 405 nm laser.  Images were analyzed with IDEAS analysis software (Amnis).  

Using the gradient root mean square feature for the brightfield channel, “Focused cells” 

were selected according to the manufacturer’s recommendation.  Debris was eliminated 

by gating single cells using the area and aspect ratio features for the brightfield channel.  

Live cells were gated using the intensity feature in the green channel (533/27 nm) for 

SYTOX Green staining.  For ABCG2 analysis, the intensity feature of the APC channel 

(694/51 nm; 642 nm excitation laser) was used to quantify the expression of ABCG2.  

For the side population assay, double positive cells from were selected by gating in the 

Hoechst Red and Hoechst Blue channels. 

5.5.6.2 Nuclear/Cytosolic Hoechst Signal Segmentation 

To process each data point channel information was saved in the image name 

such that for each sample, one each image for each channel was saved.  The Hoechst red, 

Hoechst blue, and bright field images were all exported from the FlowSight software and 

batch converted into a TIF format using ImageJ.  The images were processed using a 

custom python script, which utilized the open source SCIPY platform for image analysis.  

To obtain a whole cell mask, sobel edge detection was run on the brightfield image and 

the subsequent image was converted to a binary mask via the following steps: 
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thresholding, filling, binary closing.  The mask for the nucleus was calculated by 

thresholding the Hoechst blue signal by 25% of its maximum value.  The cytoplasmic 

mask was obtained by subtracting the image mask from the nucleus mask.  Hoechst red 

and blue signals were calculated by taking the average of each signal over the 

cytoplasmic and nuclear masks. 

5.5.7 Multiscale Ensemble Modeling of Side Population Responses 

5.5.7.1 General Overview of Approach 

Heterogeneous cell populations were simulated in an array of experimental 

conditions across a wide range of kinetic conditions to investigate the influence of 

transporter function on Hoechst staining kinetics that give rise to SP phenotypes.  Three 

models were generated describing numerical (Model 1), concentration (Model 2), and 

experimentally derived (Model 3) transporter distributions.  Individual cells (Pi) within a 

population (P) of size N=1,000 are described by a set of morphological parameters 

(volumes, surface areas, & DNA content).  The parameter values for the population were 

assigned via LHS of PDFs derived from experimental distributions of cell radii, nuclear 

radii, and DNA content.  Kinetic parameter sets (M=10,000) were obtained from LHS of 

uniform distributions in log space.  (Figure 5.11-A)  For each parameter set, Hoechst 

staining is simulated in the cell population across multiple transporter conditions and with 

and without transporter inhibition, simulating +FTC and -FTC conditions. (Figure 5.11-

B)  Each population simulation consists of N single-cell mass-action ODE simulations of 

Hoechst staining.  Following the kinetic simulations, Hoechst concentrations within 

individual cells are converted to Hoechst Red and Blue signals via linear transformation 

with a signal matrix accounting for the spectral excitation and emission properties of free 
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and DNA-bound Hoechst dyes as well as an in silico flow cytometer.  (Figure 5.11-C)  

Simulated flow cytometry signals, in arbitrary units, were then converted to Hoechst 

Score PDFs where projection gating was applied to measure the %SP.  (Figure 5.11-D)  

Hoechst scores PDFs are used to calculate FTC and SP distributions, which allow for 

visualization of differences in population simulations with and without transporter 

inhibition as well as across different transporter conditions.  (Figure 5.11-E)  Hoechst 

score metrics from in silico flow cytometry populations are compared to metrics derived 

from experimental data to gauge the extent of SP response in the populations.  Parameter 

sets with in silico populations meeting the selection criteria for identifying a SP are then 

accepted and ranked according to similarity to %SP measured experimentally according 

to the normalized root mean-squared error (RMSE, Figure 5.11-F).  Accepted sets are 

then analyzed at the single-cell SP response.  The distribution of responses to inhibition 

are used to classify the homo/heterogeneity of response magnitudes as well as the 

uniformity/bimodality of response frequency (Figure 5.11-G). 

5.5.7.2 Whole Cell and Nuclear Radii Probability Density Functions 

FlowSight imaging cytometry was used to measure whole cell and nuclear radii of 

Hoechst stained cells in the presence of FTC as per the imaging cytometer instructions.  

Cells and nuclei had aspect ratios > 0.9 and were assumed to be spherical for the 

purposes of simplification.  Whole cell and nuclear areas, reported in micrometers, were 

then used to estimate cell and nuclear radii for the population of A549 cells (Figure B.8-

A).  The size of the nucleus was not independent of the whole cell size (Figure B.8-B), 

therefore, instead of treating each as in independent distribution, a 2D PDF was 
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constructed in a manner analogous to the used to calculate PDFs for Hoechst Red and 

Blue Scores. 

5.5.7.3 Different Transporter Expression & Distributions 

5.5.7.3.1 Transporter Expression 

Different models of transporter distribution across a population were 

implemented; however, at the single-cell level, the Hoechst staining kinetic model was 

identical.  Therefore, what differed between the models was how different cells within a 

given population were assigned transporter expression.  In each of the models, 

experimentally-derived expression levels were used to inform model expression.  In 

Models 1 & 2, the relative geometric mean expression of ABCG2 from TGFβ -treated 

A549 cells (Figure 5.3-B) were used while in Model 3, the flow cytometry staining 

distribution served as a probability density function from which transporter expression 

frequency was sampled (Figure B.7-A). 

5.5.7.3.2 Model 1: Number Distribution/Equal Concentration 

Each population was associated with the geometric mean as the relative 

transporter level for the population.  This factor served as the scaling factor relative to the 

maximum geometric mean intensity from the untreated control condition.  The magnitude 

of the relative differences between transporter levels of the samples was set by 𝑘8.  The 

relative differences of transporter levels were reconfigured for each kinetic parameter set.  

Once the relative transporter level was determined, it was set as the maximum transporter 

concentration in the cytosol or nucleus where the relative intensities of cytosolic to 

nuclear transporter activities were expressed as: 
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𝑇𝐶𝑇𝐴 = 𝑘7𝑇𝑁𝑇𝐴 

Each cell within the population was assigned total cytosolic and nuclear 

transporter activities of 𝑇𝐶𝑇𝐴 & 𝑇𝑁𝑇𝐴, respectiviely. 

5.5.7.3.3 Model 2: Concentration Distribution/Equal Number 

Transporter activity for Model 2 proceeded in the same manner as Model 1; 

however, after calculation of 𝑇𝐶𝑇𝐴 & 𝑇𝑁𝑇𝐴, the average number of molar equivalents in 

cells of the distribution was calculated.  Each of the cells in the population were then 

assigned the same number of molar activity equivalents, which was then converted to 

concentration activity equivalents on a cell-by-cell basis using the cytosolic and nuclear 

volumes. 

5.5.7.3.4 Model 3: Experimental Distribution 

Flow cytometry ABCG2 surface marker staining data from TGFβ -treated A549 

cells were exported from FlowJo as compensated fluorescence intensities.  The 

distributions were then loaded into MATLAB where they were converted to PDFs for 

each individual replicated.  PDFs were generated with the ksdensity function.  For a 

particular sample, a final PDF was taken as the unit normalized average PDF of three 

experimental replicates.  The distributions were then scaled to fall between 0 and 1 

(Figure B.7-A).  Therefore values within the distribution reflect relative expression 

within the distribution. 

Relative transporter levels within a distribution (𝑇𝑇𝑜𝑡𝑎𝑙) were randomly selected 

values (𝑃𝑇𝑖) from ABCG2 expression PDF distributions where 𝑖 = [1,4], corresponding 

to ABCG2 distributions from 0, 1, 10, & 100 pM TGFβ treatments, respectively.  𝑇𝑇𝑜𝑡𝑎𝑙 
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levels are expressed in units of 𝑇𝐿𝑒𝑣𝑒𝑙.  Next, the relative transporter levels in cytosolic 

(𝑇𝐶𝑇) and nuclear (𝑇𝑁𝑇) compartments were calculated under the assumption that the total 

transporter level is split into cytosolic and nuclear compartments at a fixed ratio, which 

remains constant during the simulation. 

 

 Total Transporter Level:    

𝑇𝑇𝑜𝑡𝑎𝑙 = 𝑇𝐶𝑇 + 𝑇𝑁𝑇 

 Cytosolic/Nuclear Transporter Levels:  

𝑇𝐶𝑇 = 𝑘7𝑇𝑁𝑇 

 

Total transporter activity levels were then calculated from the Hill equation (𝜃𝑐), 

reflecting the cooperative interactions of transporters within each compartment: 

 Total Cytosolic Transporter Cooperatively:   

𝑇𝐶𝑇𝐴 = 𝜃𝑐(𝑇𝐶𝑇) 

 Total Nuclear Transporter Cooperatively:   

𝑇𝐶𝑁𝐴 = 𝜃𝑐(𝑇𝑁𝑇) 

Transporter Cooperatively:  

𝜃𝑐(𝑇) =  
𝑇𝑘8

𝑘9
𝑘8 + 𝑇𝑘8

 

5.5.7.3.5 Transporter Activity Level Inhibition 

Prior to kinetic modeling of Hoechst staining, each cell was assigned a total 

cytosolic and nuclear transporter activities, 𝑇𝐶𝑇𝐴 & 𝑇𝑁𝑇𝐴.  The absolute transporter 

activity in the kinetic simulation was then determined by the absolute scaling factor 𝑘6 as 
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well as the degree of transporter inhibition (𝑖𝑇), where 𝑖𝑇 = 0.99 in the inhibited 

condition(+FTC) while 𝑖𝑇 = 0 in the uninhibited condition (-FTC). 

 Total Cytosolic Transporter Activity:    

𝑇𝐶𝐴 = 𝑘6(1 − 𝑖𝑇)𝑇𝐶𝑇𝐴 

 Total Nuclear Transporter Activity:    

𝑇𝑁𝐴 = 𝑘6(1 − 𝑖𝑇)𝑇𝐶𝑁𝐴 

5.5.7.4 Hoechst/DNA-Binding Site Expression Probability Density Function 

DNA content distributions within cell populations can be measured with Hoechst 

staining. (Darzynkiewicz, 2001)  Therefore we took the +FTC Hoechst stained samples to 

represent the relative distribution of DNA content within a population.  Hoechst Blue 

signals for each of the +FTC conditions in the SP time course study were loaded into 

MATLAB and converted into a PDF using the ksdensity function.  An overall distribution 

was constructed from the average of the 39 individual PDFs (Figure B.7-B).  The 

distribution was then normalized to the mode so that the distribution represented a 

distribution relative to the mode.  The mode was assume to represent a cell in the G0/G1 

phase and have a relative DNA content of the size of 1 genome for an A549 cell.  We 

used this distribution to estimate the number of Hoechst-binding sites in DNA (Figure 

B.7-B). 

A549 Genome Size = 7.3x10
8
 Base Pairs   

Base Pairs Per Hoechst Binding Site = 80  (Loontiens et al., 1990) 

Binding Site Number per Mole (𝐴𝑣𝑔𝑁) = 6.022x10
23

 

For a given cell, the relative DNA level sampled as 𝐷𝑁𝐴𝐿 with units of 𝐷𝑁𝐴𝐿𝑒𝑣𝑒𝑙.  

Within the population, each of the DNA intensities was identically scaled, though 
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maintaining their relative distribution, to determine absolute binding sites and converted 

to molar binding sites.  Finally, binding site number was factored by nuclear volume to 

derive a molar concentration of binding site number. 

𝐷𝑁𝐴𝑇𝑜𝑡𝑎𝑙 = 𝐷𝑁𝐴𝐿 ∙ (𝐺𝑒𝑛𝑜𝑚𝑒 𝑆𝑖𝑧𝑒) ∙ (𝐵𝑎𝑠𝑒 𝑝𝑎𝑖𝑟𝑠 𝑝𝑒𝑟 𝑠𝑖𝑡𝑒) ∙ 𝑘2/𝐴𝑣𝑔𝑁 

5.5.7.5 Sampling PDFs to Construct In silico Cell Populations 

To sample PDFs and produce in silico populations, PDFs were converted, 

approximately, to cumulative distribution functions (CDF) by taking the cumulative sum 

of a PDF.  The CDFs were then normalized to a range of 0 to 1.  To generate a population 

of N cells from the PDF, N random numbers were drawn from the interval of 0 to 1 and 

mapped to the CDF to find the corresponding expression value.  In our observation, 

random sampling over the entire interval produced highly variable stochastic effects.  To 

circumvent this issue, we implemented Latin hypercube sampling (LHS) of the CDF, 

which more uniformly sampled the distribution.  To sample the radii, Nx2 random 

numbers between 0 and 1 were generated.  The whole cell PDF was sampled as an 

independent PDF.  Next, the nuclear PDF for the given whole cell radii was sampled to 

sample the conditional PDF for nuclear radii size.  Reconstructed cell populations of 

various sizes are shown in Figure B.8-C.  After the radii were sampled for a given cell, 

the radii were used to calculate cell and nuclear volumes and surface areas, assuming 

spherical morphology.  Cytosolic volumes were taken as the difference between whole 

cell and nuclear volumes.  Notably, the same LHS vector was used to sample the 

different CDFs of transporter expression.  Therefore, the sampling of transporters 

between populations is consistent. 
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Table 5.1  Single-Cell ODE Model Morphology & Expression Variables. 

The variables listed below were assigned by LHS of experimental distributions for each 

cell within an in silico cell population.  

Parameter Symbol Units 

Cytosolic Volume 𝑉𝐶 𝑝𝑙 

Plasma Membrane Surface Area 𝐴𝐶  µ𝑚2 

Nuclear Volume 𝑉𝑁 𝑝𝑙 

Nuclear Surface Area 𝐴𝑁 µ𝑚2 

Relative DNA Level 𝐷𝑁𝐴𝐿 𝐷𝑁𝐴𝐿𝑒𝑣𝑒𝑙 

Relative Transporter Level 𝑇𝑇𝑜𝑡𝑎𝑙 𝑇𝐿𝑒𝑣𝑒𝑙 

  



www.manaraa.com

 156 

5.5.7.6 Latin Hypercube Sampling (LHS) of Kinetic Parameter Space 

M combinations of kinetic parameters (𝑘𝑞) were assigned via LHS, which 

segments a dimension of parameter space into uniform segments.  Within each segment, 

a parameter value is selected from a uniform random distribution.  Thus, LHS generates a 

collection of randomly chosen parameter choices with nearly uniform sampling of the 

parameter space.  Within MATLAB, the lhsdesign function was used to generate an MxQ 

LHS matrix of M samples within the interval (0,1) for each of the L parameters (Models 

1 & 2, Q=8; Model 3, Q=9).  The criterion correlation and maxmin were enabled and 50 

iterations were permitted to reduce correlation and maximize point-to-point distance 

within the LHS matrix. 

To convert the LHS of the parameter space ranges in Log10 space for a given 

parameter 𝑘𝑞, the q
th

 column of the LHS matrix was scaled by the Log10 of the range size 

and increased by Log10 of the lower limit of the range.  Finally, the parameter value 𝑘𝑚𝑞 

was obtained by taking the antilog of the m,q
th 

 entry of the transformed LHS matrix.  In 

Model 3, the Hill Half-Maximal Level, 𝑘9, was sampled uniformly from 0 to 1. 

Initial modeling included 𝑘𝑜𝑓𝑓 within the parameter search space; however, early 

interrogation of the system demonstrated insensitivity to variation in 𝑘𝑜𝑓𝑓.  Therefore we 

maintain a fixed 𝑘𝑜𝑓𝑓 relative to 𝑘1 in all ensembles based on the reported KD of 10
-7

. 

(Loontiens et al., 1990) 
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Table 5.2  Single-Cell ODE Model Kinetic Parameters.  

Sets of random kinetic parameters were assigned using LHS to uniformly sample the 

parameter range in Log10-spaced intervals.  The set of kinetic parameters is a uniformly 

applied across a population. 

Parameter Symbol Range Units 

Hoechst-DNA Association Rate 𝑘1 10
-1

-10
5
 1

µ𝑀 ∙ 𝑚𝑖𝑛⁄  

†Hoechst-DNA Dissociation Rate 𝑘𝑜𝑓𝑓 𝑘1 ∙ 10−7 1
𝑚𝑖𝑛⁄  

DNA Binding Site Scaling Term 𝑘2 10
-3

-10
3
 N/A 

Hoechst Membrane Permeability 𝑘3 10
-6

-10
4
 𝑎𝑚𝑜𝑙

µ𝑀 ∙ µ𝑚2 ∙ 𝑚𝑖𝑛⁄  

Hoechst-Transporter Association  𝑘4 10
-6

-10
12

 1
µ𝑀 ∙ 𝑚𝑖𝑛⁄  

Hoechst-Transporter Dissociation  𝑘5 10
-6

-10
12

 1
𝑚𝑖𝑛⁄  

Absolute Transporter Expression 𝑘6 10
-6

-10
6
 µ𝑀

𝑇𝐿𝑒𝑣𝑒𝑙
⁄  

Cyt./Nuc.  Transporter Ratio 𝑘7 10
-5

-10
5
 N/A 

* Transporter Expression Slope 𝑘8 10
-2

-10
2
 N/A 

** Transporter Hill Coefficient 𝑘8 10
0
-10

1
 N/A 

** Transporter Half-Maximal Level 𝑘9 0-1 𝑇𝐿𝑒𝑣𝑒𝑙 

* Model 1 & 2 

**  Model 3 

† 𝑘𝑜𝑓𝑓 set according to the value reported by (Loontiens et al., 1990) 
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5.5.7.7 Kinetic Model of Hoechst Staining 

Simulation of Hoechst staining took place at the single-cell level.  Within each 

population, cells were assigned variable cell and nuclear sizes, DNA content, and, in 

Model 3, relative transporter levels.  Across the set of kinetic parameters were common 

across the entire population.  Hoechst staining within a single cell was modeled using 

mass-action kinetics to describe the rates of reaction the transport across plasma and 

nuclear membranes (Figure B.9-A).  Each single cell system was modeled with three 

spatial compartments and was simulated with 90 minutes of staining. 

In each simulation, cells were initialized with no Hoechst species within the cell.  

The extracellular compartment was assumed to be so large so as to not experience 

changes in Hoechst concentration throughout the simulation.  Total DNA binding sites, 

cytosolic transporter, and nuclear transporter levels were assumed to be conserved during 

the time course of the staining and, using conservation of mass, used algebraically to 

reduce the order of the system, setting the order of the system at 5 differential variables 

(Table 5.3).  The set of kinetic reactions were used to compose the set of differential 

equations, which governed the dynamics of Hoechst-associated species within the kinetic 

model. 

For each single-cell simulation, variables were assigned initial conditions and 

submitted with system reaction equations to the ode15s solver in MATLAB.  Constant 

variables remain unchanged during the course of the simulation.  Algebraic variables are 

derived from constant and differential variables using algebraic conservation equations at 

each time point in the solver.  Differential variables are solved at each time point in the 

solver according to the set of differential equations.   
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Table 5.3  Single-Cell ODE Model Mass-Action Variables. 

The variables listed below are those that are species involved in mass-action kinetic 

reactions that simulate the staining of cells with extracellular Hoechst.   

Species Symbol Initial Condition Variable Type 

Extracellular Hoechst 𝐻𝑒 5 µM Constant 

Cytosolic Hoechst 𝑥1 0 Differential 

DNA-Bound Hoechst 𝑥2 0 Differential 

Unbound DNA Binding Sites 𝐷𝑁𝐴 𝐷𝑁𝐴𝑇 Algebraic 

Total DNA Binding Sites 𝐷𝑁𝐴𝑇  𝐷𝑁𝐴𝑇𝑜𝑡𝑎𝑙 Constant 

Hoechst-Bound Cytosolic Transporter 𝑥3 0 Differential 

Unbound Cytosolic Transporter 𝑇𝐶 𝑇𝐶𝐴 Algebraic 

Total Cytosolic Transporter 𝑇𝐶𝐴 𝑘6𝑇𝐶𝑇𝐴 Constant 

Nuclear Hoechst 𝑥4 0 Differential 

Hoechst-Bound Nuclear Transporter 𝑥5 0 Differential 

Unbound Nuclear Transporter 𝑇𝑁 𝑇𝑁𝐴 Algebraic 

Total Nuclear Transporter 𝑇𝑁𝐴 𝑘6𝑇𝑁𝐴 Constant 
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5.5.7.7.1 Mass Conservation Equations 

During a simulation of Hoechst staining in a single cell, the amount of transporter 

and Hoechst/DNA-binding sites are assumed to be conserved and un-changed in total 

quantity.  Algebraic terms accounting for this conservation are substituted into the model 

for simplification and to reduce the order of the model.  

 Hoechst/DNA-Binding Sites:   

𝐷𝑁𝐴𝑇 = 𝐷𝑁𝐴 + 𝑥2 

 Cytosolic Transporter:   

𝑇𝐶𝐴 = 𝑇𝐶 + 𝑥3 

 Nuclear Transporter:    

𝑇𝑁𝐴 = 𝑇𝑁 + 𝑥5 

5.5.7.7.2 Kinetic Reaction Equations 

 Plasma Membrane Diffusion:      

𝑟1 =  𝑘3

𝐴𝐶

𝑉𝐶
(𝐻𝑒 − 𝑥1) 

 Hoechst-DNA Association:      

𝑟2 =  𝑘1𝑥4𝐷𝑁𝐴 

 Hoechst-DNA Dissociation:      

𝑟3 =  𝑘𝑜𝑓𝑓𝑥2 

 Cytosolic Hoechst-Transporter Association:    

𝑟4 =  𝑘4𝑥1𝑇𝐶 

 Cytosolic Hoechst-Transporter Dissociation & Efflux:  

𝑟5 =  𝑘5𝑥3 
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 Nuclear Membrane Diffusion:     

𝑟6 =  𝑘3𝐴𝑁(𝑥4 − 𝑥1) 

 Nuclear Hoechst-Transporter Association:    

𝑟7 =  𝑘4𝑥4𝑇𝑁 

 Nuclear Hoechst-Transporter Dissociation & Efflux:   

𝑟8 =  𝑘5𝑥5 

5.5.7.7.3 Differential Equations 

 Cytosolic Hoechst:      

𝑑𝑥1

𝑑𝑡
=  𝑟1 − 𝑟4 +

𝑟6

𝑉𝐶
+

𝑉𝑁

𝑉𝐶
𝑟8 

 DNA-Bound Hoechst:      

𝑑𝑥2

𝑑𝑡
=  𝑟2 − 𝑟3 

 Cytosolic Transporter-Bound Hoechst:   

𝑑𝑥3

𝑑𝑡
=  𝑟4 − 𝑟5 

 Nuclear Hoechst:      

𝑑𝑥4

𝑑𝑡
=  −𝑟2 − 𝑟3 −

𝑟6

𝑉𝑁
− 𝑟7 

 Nuclear Transporter-Bound Hoechst:    

𝑑𝑥5

𝑑𝑡
=  𝑟7 − 𝑟8 

5.5.7.8 In silico Flow Cytometry Simulation 

Conversion of simulated Hoechst staining into Hoechst Red and Blue signals was 

mediated by a linear transformation of DNA-bound Hoechst and non-DNA-bound (free)  
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Hoechst species within each cell in a process we refer to as in silico flow cytometry.  

Following the kinetic simulation of Hoechst staining, the molar quantity of total free 

Hoechst and DNA-bound Hoechst are determined for each cell.  The quantities of these 

dyes are then used to calculate a corresponding Hoechst Red and Hoechst Blue signal.  

Hoechst Red and Blue signals result from the combination of Hoechst Red and Blue 

emission from both DNA-bound and free Hoechst species (Figure B.9-B).  DNA-bound 

and free Hoechst dyes possess different spectral properties, including quantum yield, 

excitation maxima, and emission maxima. (Cosa et al., 2001)  These differences manifest 

as differences in relative excitation efficiency and emission strength in the Hoechst Red 

and Blue emission channels (Figure B.9-C).  Accounting for these factors, we are able to 

formulate a signal transformation matrix with which we can transform quantities of 

DNA-bound and free Hoechst into relative Hoechst Red and Blue signals.  The 

formulation of the signal transformation matrix is detailed in Appendix B.5.2 . 

5.5.7.9 Hoechst Score & PDF Conversion of Flow Cytometry Signals 

Following the calculation of in silico flow cytometry values of Hoechst Red and 

Blue signals for each cell in a population, Hoechst Scores data was derived from Hoechst 

signal data.  Processing of data from the in silico flow data was identical to that of data 

processed in real flow cytometry data.  For a given in silico sample (inhibition and no 

inhibition pairing), PDF+FTC, PDF-FTC, and ∆FTC distributions were calculated.  The SP 

size was measured using the projection gating approach.  Finally, across the four 

conditions, the ∆FTC distributions were compared to the ∆FTC distribution from the 

highest transporter sample, corresponding to untreated control, to calculate ∆SP 

distributions.  
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5.5.7.10 Data-Driven Qualitative Selection of SP Responses 

Simulation of each of the ensembles produced the following data: differences in 

Hoechst Scores staining metrics, Hoechst Score PDF+FTC, Hoechst Score PDF-FTC, 

∆FTC, and ∆SP relative to the control, and %SP for each in silico sample.  In the 

analogous experimental conditions, Day 4 of the SP time course with 4 differing TGFβ  

sample conditions, we possess equivalent experimental data (Figure 5.4-A, 5.5-B, B.4-C).  

We used the experimental data to guide selection of models in terms of SP response.  A 

series of selection check points were setup, which each ensemble was required to meet all 

selection criterion in order to be accepted as exhibiting a SP response. 

First, the two highest transporter conditions were required to have negative 

∆HRSmean and ∆HBSmean values, reflecting an over all decrease in Hoechst staining.  

Next, the PDF+FTC and PDF-FTC were not allowed to share any less than 25% overlap, 

indicating that the entire range of population did not shift without inhibition.  The 

responses across all of the transporter conditions were required to reflect that of the 

experimental data.  Ensembles were required to demonstrate a positive correlation for 

both the ∆HRSmean with experimentally observed ∆HRSmean values and ∆HBSmean with 

experimentally observed ∆HBSmean values.  Experimental PDF+FTC, PDF-FTC, ∆FTC, and 

∆SP distributions for all conditions were exported from the SP time course study.  The 

normalized, aligned 2D cross correlation was calculated for each simulation/experimental 

pairing.  Within each of the categories, PDF+FTC, PDF-FTC, ∆FTC, and ∆SP, the average 

cross correlation of all of the conditions was required to be positive.  Finally, ensembles 

were required possess a %SP of at least 5% for the control sample and a differential %SP 

of 2.5% between the control and lowest transporter expressing sample.  Ensembles 
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meeting the selection criteria were then scored according to the normalized root mean-

square error (RMSE) of the %SP and differences in %SP with the experimental data.  

Ensembles with RMSE < 0 were excluded from SP response distribution analysis. 

5.5.7.11 Analysis of Single-Cell Side Population Response Distributions 

Within an ensemble, each of the cell populations is identical to one another, 

except for the relative amount of transporter activity.  Unlike experimental assays, cells 

within the in silico assay are indexed and differences between samples perfectly 

controlled for.  Therefore we can examine how the exact same cell will stain differently 

under very tightly controlled alternate scenarios.  Because of this feature, we can tabulate 

the difference in Hoechst Score projection in the inhibited and uninhibited Hoechst 

staining simulations.  Thus, for each cell in a sample, we determine the difference 

between these two conditions as -∆Hproj, in which a larger value corresponds to a larger 

single-cell SP response.  For each ensemble passing the qualitative selection process, the 

distributions of -∆Hproj values for each of the samples was further analyzed to interrogate 

the “shape” of the distribution.  For each sample distribution, the 3
rd

 standardized 

moment (skewness) and 4
th

 standardized moment (kurtosis) was calculated.  The 

skewness and kurtosis were used to calculate the bimodality coefficient: 

𝐵𝐶 =  
𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠2 + 1

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠
 

5.5.7.12 Model Implementation 

At the start of each simulation, an in silico population of N cells was generated and M 

kinetic parameter sets constructed using LHS.  In parallel, kinetic parameter sets were 

submitted with cell populations to conduct the simulations within an ensemble.  Many 
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parameter sets were stiff to numerical solving.  To prevent stalled simulation of the 

overall model, populations or single-cells that failed to solve within and allotted time 

window were aborted.  Upon completion each ensemble was checked for a SP response.  

Upon completion of all of the models, the single-cell SP response distributions were 

analyzed for each of the passing ensembles in a model and aggregated for comparison. 

5.5.8 Software 

Flow cytometry and Flow Sight imaging cytometry data were processed and 

analyzed using FlowJo for Mac OS X version 10.0.7, Tree Star, Inc.  Statistical analyses 

of experimental data were performed within Graphpad Prism for Mac OS X version 6.0e.  

Imaging Cytometry images were segmented using ImageJ and the SCIPY platform in 

python.  Cytometry distribution analyses were performed using MATLAB version 2014a 

(64-bit), MathWorks Inc, in 64-bit Windows 8.1.  Side population simulations were 

implemented in MATLAB version 2014a for Linux and run in parallel on the PACE 

cluster at Georgia Tech, which consisted of 64 single core 3.8 GHZ AMD processors 

with over 240 GB of total RAM available (10 GB per node).  The following MATLAB 

File Exchange entries (accessed on 11/5/14) were implemented in MATLAB to analyze 

or display cytometry or simulation data: smoothhist2d (13352) (Perkins, 2009), 

tight_subplot (27991) (Kumpulainen, 2010), suplabel (7772) (Barrowes, 2005),  redblue 

(25536) (Auton, 2009), progress monitor (32101) (Jeremy, 2011), and distributionPlot 

(23661) (Jonas, 2009). 
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CHAPTER 6  CONCLUSIONS AND FUTURE DIRECTIONS  

 

 

6.1 Conclusions 

The body of work presented in this dissertation advances the field of cancer 

biology by implementation of the multivariate phenotype analysis techniques, and 

through development of a novel modeling approach.  The objective of this research was 

to investigate how redox regulated processes contribute to complex phenotypes that arise 

in the context of TGFβ-mediated EMT using multivariate and systems approaches.  We 

reconciled the coexistence of dual redox regulatory motifs, antioxidant attenuation of 

TGFβ signaling and TGFβ-mediated antioxidant attenuation, within the same 

experimental model in Chapter 3.  In Chapter 4 we investigated the possibility that the 

two regulatory motifs could operate across biological and temporal scales during the 

course of EMT.  Finally, in Chapter 5 we investigated the types of transporter activity 

distributions that emerge as drug resistant subpopulations.  Each chapter has added to our 

understanding of the regulatory processes that operate during TGFβ-mediated EMT.  

The observations in Chapter 3 that TGFβ signaling in A549 cells is inhibited by 

cell-retained antioxidants, and that TGFβ signaling leads to down-regulation of cellular 

antioxidants in the same experimental model, were significant because of the potential to 

observe a systems level property.  Numerous studies have been conducted with A549 

cells and focus on the aspect of antioxidant down-regulation, inhibition of TGFβ 

signaling, or induction of EMT.  However, we hypothesized in Chapter 4 that increased 
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cellular oxidation during TGFβ-mediated EMT reinforces TGFβ signaling in a feed-

forward manner as well as contributes to maintenance of mesenchymal phenotype 

(Figure 3.12).  A positive feedback loop can only operate in the context of a system.  The 

findings that originally supported the concept of a redox-mediated positive feedback loop 

during EMT were obtained by various investigators under many disparate experimental 

conditions.  We observed the manifestation of multiple redox mechanisms in a single 

experimental model. 

Our intent to investigate the dynamics of the intracellular redox environment in 

the context of EMT presented a significant challenge.  Yet, to assess the potential 

influence of redox processes on the acquisition of phenotype, time course dynamics were 

necessary.  The multivariate nature of such an experiment posed several challenges, one 

of which was visualizing high dimension time course data in a manner that preserves the 

benefits of taking a systems approach.  Another issue was the incompleteness of larger 

datasets that contained more experimental conditions, some of which were not taken at 

every time point (Figure 4.7).  Our choice to implement principal component analysis 

was very conducive to overcoming these issues.  While we did not observe a redox-

mediated feedback loop at work in our system, the multivariate time course approach we 

took is applicable in other settings and itself is a noteworthy addition to a biologically 

oriented field. 

One of the more significant aspects of our characterization of redox environment 

during EMT was the scope on which it was conducted, both on temporal and functional 

scales.  We observed extensive antioxidant down-regulation (Figure 4.3) coupled with an 

impaired capacity to clear electrophilic insults (exogenous H2O2) (Figure 4.6).  These 
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findings suggest that the down-regulation of antioxidants is truly coordinated in a 

regulated fashion, and is not simply an outlier response observed due to chance. 

Enhanced ABCG2 transporter activity in the SP compared to NSP cells is the 

accepted basis for the formation of a SP in a Hoechst staining condition without 

transporter inhibition.  Aside from inequality (SP activity > NSP activity), little was 

known about the absolute or relative transporter activities in SP and NSP cells.  In 

Chapter 5, we developed a novel modeling approach that simulated Hoechst staining of 

heterogeneous cell populations, assessed SP formation in silico, and analyzed the 

resulting data in a manner that was perfectly analogous with experimental SP data.  This 

modeling approach was developed for use in analyzing SP data; however, the same 

computational framework could be applied to investigate other models of heterogeneity.  

An extensive array of single-cell transporter activity distributions produced a 

roughly qualitative SP response; however, we observed better-fit models and visually 

more congruent distributions in highly skewed and bimodal distributions (Figure 5.16).  

The high-frequency/low-response in this distribution was coupled with a low-

frequency/high-response subpopulation.  If MDR phenotypes arise in the setting of 

chemotherapy, the distribution of transporter kinetics may be informative for choosing 

alternative treatment strategies.  

When conventional methods for measuring SP size were employed, we 

encountered a significant obstacle.  Applying such an approach in a very large parameter 

set would have been nearly impossible due to the subjective nature of the reported 

approaches.  In addressing this modeling challenge, we developed an objective 

methodology to measure side populations in terms of %SP, the conventionally reported 



www.manaraa.com

 169 

value (Figure 5.6).  We also investigated a number of other potential metrics and found 

that differences in Hoechst staining between inhibited and uninhibited conditions were 

correlated to %SP (Figure 5.5). Therefore, we have demonstrated a number of objective 

approaches to measuring SP responses that eliminate user-defined bias. 

6.2 Future Directions 

6.2.1 Cycling of Epithelial/Mesenchymal Differentiation  

In our investigation on the effects of antioxidants on phenotype following 

epithelial/mesenchymal differentiation (Figure 4.9), we observed no difference in the 

degree of differentiation of antioxidant-treated and untreated samples.  Additionally, the 

cell degree of phenotype remained largely unchanged from the 48 hours condition.  

During our SP time course study (Figure 5.4), we observed a cyclic trend in SP size, 

indicating that some aspect of the phenotype was being reset upon passage.  A key 

difference in the antioxidant challenge and the SP time course experiment is the 

implementation of passage.  Whether passaging of epithelial cells has an analogous reset 

of epithelial phenotype that it does on the SP is unknown.   

6.2.2 Additional Research Questions 

 Does nucleophilic tone correlate with ABCG2 activity across a population, 

and therefore exhibit heterogeneity? 

 Does epithelial/mesenchymal differentiation correlate with ABCG2 

activity across a population, and therefore exhibit heterogeneity?  

 Do equivalent ABCG2/transporter distributions arise de novo from single 

cell clones? 
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APPENDIX A  SUPPLEMENTARY DATA AND ADDITIONAL 

ANALYSES ON THE MULTIVARIATE CHARACTERIZATION 

OF REDOX REGULATION DURING TGFβ-MEDIATED EMT 
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A.1  Quantitative Real-Time PCR (qRT-PCR) 

Table A.1  PCR Transcript Primers & Classification. 

Overview of transcript primers on the Qiagen Oxidative Stress Plus PCR Array with the 

gene classification (A = Antioxidant; P = Pro-oxidant; H = Housekeeping Gene; U = 

Undetermined Significance). 

 

UniGene RefSeq Symbol Gene Class 

Hs.592379 NM_000477 ALB 
Albumin 

A 

Hs.654431 NM_000697 ALOX12 
Arachidonate 12-lipoxygenase 

P 

Hs.406238 NM_001159 AOX1 
Aldehyde oxidase 1 

P 

Hs.654439 NM_000041 APOE 
Apolipoprotein E 

A 

Hs.125213 NM_004045 ATOX1 ATX1 antioxidant protein 1 homolog 

(yeast) 

A 

Hs.144873 NM_004052 BNIP3 BCL2/adenovirus E1B 19kDa interacting 

protein 3 

U 

Hs.502302 NM_001752 CAT 
Catalase 

A 

Hs.514821 NM_002985 CCL5 
Chemokine (C-C motif) ligand 5 

U 

Hs.502917 NM_005125 CCS Copper chaperone for superoxide 

dismutase 

A 

Hs.292356 NM_000397 CYBB 
Cytochrome b-245, beta polypeptide 

P 

Hs.95120 NM_134268 CYGB 
Cytoglobin 

A 

Hs.498727 NM_014762 DHCR24 
24-dehydrocholesterol reductase 

U 

Hs.272813 NM_175940 DUOX1 
Dual oxidase 1 

P 
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Table A.1 continued 

UniGene RefSeq Symbol Gene Class 

Hs.71377 NM_014080 DUOX2 
Dual oxidase 2 

P 

Hs.171695 NM_004417 DUSP1 
Dual specificity phosphatase 1 

U 

Hs.212088 NM_001979 EPHX2 
Epoxide hydrolase 2, cytoplasmic 

U 

Hs.279259 NM_000502 EPX 
Eosinophil peroxidase 

P 

Hs.735243 NM_021953 FOXM1 
Forkhead box M1 

U 

Hs.712676 NM_002032 FTH1 
Ferritin, heavy polypeptide 1 

A 

Hs.654465 NM_001498 GCLC Glutamate-cysteine ligase, catalytic 

subunit 

A 

Hs.76686 NM_000581 GPX1 
Glutathione peroxidase 1 

A 

Hs.2704 NM_002083 GPX2 
Glutathione peroxidase 2 (gastrointestinal) 

A 

Hs.386793 NM_002084 GPX3 
Glutathione peroxidase 3 (plasma) 

A 

Hs.433951 NM_002085 GPX4 Glutathione peroxidase 4 (phospholipid 

hydroperoxidase) 

A 

Hs.248129 NM_001509 GPX5 Glutathione peroxidase 5 (epididymal 

androgen-related protein) 

A 

Hs.271510 NM_000637 GSR 
Glutathione reductase 

A 

Hs.82327 NM_000178 GSS 
Glutathione synthetase 

A 

Hs.523836 NM_000852 GSTP1 
Glutathione S-transferase pi 1 

A 

Hs.655292 NM_001513 GSTZ1 
Glutathione transferase zeta 1 

A 

Hs.702139 NM_005345 HSPA1A 
Heat shock 70kDa protein 1A 

U 

Hs.80828 NM_006121 KRT1 
Keratin 1 

U 

Hs.234742 NM_006151 LPO 
Lactoperoxidase 

P 

Hs.517586 NM_005368 MB 
Myoglobin 

U 

Hs.499674 NM_000242 MBL2 Mannose-binding lectin (protein C) 2, 

soluble 

U 
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Table A.1 continued 

UniGene RefSeq Symbol Gene Class 

Hs.458272 NM_000250 MPO 
Myeloperoxidase 

P 

Hs.75659 NM_002437 MPV17 MpV17 mitochondrial inner membrane 

protein 

P 

Hs.490981 NM_012331 MSRA 
Methionine sulfoxide reductase A 

A 

Hs.73133 NM_005954 MT3 
Metallothionein 3 

A 

Hs.655201 NM_000265 NCF1 
Neutrophil cytosolic factor 1 

P 

Hs.587558 NM_000433 NCF2 
Neutrophil cytosolic factor 2 

P 

Hs.709191 NM_000625 NOS2 
Nitric oxide synthase 2, inducible 

P 

Hs.371036 NM_016931 NOX4 
NADPH oxidase 4 

P 

Hs.657932 NM_024505 NOX5 NADPH oxidase, EF-hand calcium 

binding domain 5 

P 

Hs.534331 NM_002452 NUDT1 Nudix (nucleoside diphosphate linked 

moiety X)-type motif 1 

A 

Hs.368525 NM_020992 PDLIM1 
PDZ and LIM domain 1 

U 

Hs.731900 NM_002574 PRDX1 
Peroxiredoxin 1 

A 

Hs.432121 NM_005809 PRDX2 
Peroxiredoxin 2 

A 

Hs.523302 NM_006793 PRDX3 
Peroxiredoxin 3 

A 

Hs.83383 NM_006406 PRDX4 
Peroxiredoxin 4 

A 

Hs.502823 NM_181652 PRDX5 
Peroxiredoxin 5 

A 

Hs.731505 NM_004905 PRDX6 
Peroxiredoxin 6 

A 

Hs.610285 NM_183079 PRNP 
Prion protein 

U 

Hs.201978 NM_000962 PTGS1 
Prostaglandin-endoperoxide synthase 1 

(prostaglandin G/H synthase and 

cyclooxygenase) 

P 

Hs.196384 NM_000963 PTGS2 
Prostaglandin-endoperoxide synthase 2 

(prostaglandin G/H synthase and 

cyclooxygenase) 

P 
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Table A.1 continued 

UniGene RefSeq Symbol Gene Class 

Hs.134623 NM_014245 RNF7 
Ring finger protein 7 

U 

Hs.32148 NM_203472 VIMP 
Selenoprotein S 

A 

Hs.745017 NM_005410 SEPP1 
Selenoprotein P, plasma, 1 

A 

Hs.253495 NM_003019 SFTPD 
Surfactant protein D 

U 

Hs.466693 NM_012237 SIRT2 
Sirtuin 2 

U 

Hs.443914 NM_000454 SOD1 
Superoxide dismutase 1, soluble 

A 

Hs.487046 NM_000636 SOD2 
Superoxide dismutase 2, mitochondrial 

A 

Hs.2420 NM_003102 SOD3 
Superoxide dismutase 3, extracellular 

A 

Hs.724025 NM_003900 SQSTM1 
Sequestosome 1 

U 

Hs.516830 NM_080725 SRXN1 
Sulfiredoxin 1 

A 

Hs.467554 NM_000547 TPO 
Thyroid peroxidase 

P 

Hs.134602 NM_003319 TTN 
Titin 

U 

Hs.443430 NM_006440 TXNRD2 
Thioredoxin reductase 2 

A 

Hs.80658 NM_003355 UCP2 Uncoupling protein 2 (mitochondrial, 

proton carrier) 

P 

Hs.734597 NM_001354 AKR1C2 

Aldo-keto reductase family 1, member C2 

(dihydrodiol dehydrogenase 2; bile acid 

binding protein; 3-alpha hydroxysteroid 

dehydrogenase, type III) 

U 

Hs.745046 NM_004282 BAG2 
BCL2-associated athanogene 2 

U 

Hs.443687 NM_001450 FHL2 
Four and a half LIM domains 2 

U 

Hs.315562 NM_002061 GCLM Glutamate-cysteine ligase, modifier 

subunit 

A 

Hs.69089 NM_000169 GLA 
Galactosidase, alpha 

U 

Hs.517581 NM_002133 HMOX1 
Heme oxygenase (decycling) 1 

A 
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Table A.1 continued 

UniGene RefSeq Symbol Gene Class 

Hs.525600 NM_001017963 HSP90AA1 Heat shock protein 90kDa alpha 

(cytosolic), class A member 1 

U 

Hs.527748 NM_022126 LHPP 
Phospholysine phosphohistidine 

inorganic pyrophosphate 

phosphatase 

U 

Hs.171426 NM_181782 NCOA7 
Nuclear receptor coactivator 7 

U 

Hs.406515 NM_000903 NQO1 NAD(P)H dehydrogenase, quinone 

1 

A 

Hs.584864 NM_012212 PTGR1 
Prostaglandin reductase 1 

U 

Hs.390594 NM_014331 SLC7A11 
Solute carrier family 7 (anionic 

amino acid transporter light chain, 

xc- system), member 11 

U 

Hs.407856 NM_003122 SPINK1 Serine peptidase inhibitor, Kazal 

type 1 

U 

Hs.466929 NM_024108 TRAPPC6A Trafficking protein particle 

complex 6A 

U 

Hs.435136 NM_003329 TXN 
Thioredoxin 

A 

Hs.654922 NM_003330 TXNRD1 
Thioredoxin reductase 1 

A 

Hs.520640 NM_001101 ACTB 
Actin, beta 

H 

Hs.534255 NM_004048 B2M 
Beta-2-microglobulin 

H 

Hs.544577 NM_002046 GAPDH Glyceraldehyde-3-phosphate 

dehydrogenase 

H 

Hs.412707 NM_000194 HPRT1 Hypoxanthine 

phosphoribosyltransferase 1 

H 

Hs.546285 NM_001002 RPLP0 
Ribosomal protein, large, P0 

H 
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Figure A.1  Full Volcano Plot of Anti- & Pro-oxidant Gene Regulation by TGFβ. 

A549 cells were treated with 200 pM TGFβ for 48 hours, after which the expression of 

antioxidant and pro-oxidant genes were compared against untreated controls via qRT-

PCR.  Genes demonstrating a greater than 2-fold change in expression and a p value less 

than 0.05 are labeled with the gene name.  P values were determined by two-way 

ANOVA with multiple comparisons and the fold-change plotted as the mean ± standard 

error of the mean.  Data are the result of 3 independent biological replicates (n=3).   
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A.2  Considerations for PCA Model Quality 

Each of the models reported were considered to be of good quality.  We based this 

determination on a number of metrics for each model.  Overviews of the quality of the 

models can be found in the following sections.  Each of the models was fit with 2 PCs.  

The distribution of data across these PCs indicates the degree to which variable 

responses, i.e. variance, is explained by the PCs.  Both the eigenvalue and R
2
X for a PC 

describe how much of the data is accounted for by a particular PC.  While eigenvalues 

will scale with the size of the data, the R
2
X is a metric restricted between 0 and 1.  

Comparison of these values for each of the PCs indicates the how much of the variance is 

captured by each of the PCs.  By construction, R
2
XPC1 will always be greater than 

R
2
XPC2.  

Total variance explained by the model can be determined by the summation of all 

R
2
XPC values, or R

2
Xcum, which is simply referred to as R

2
X in the text.  In addition to 

R
2
X, which describes how much of the data is explained, the Q

2
 metric provides an 

indication of goodness of prediction.  Q
2
 is determined by a leave-one-out cross-

validation and indicates how well the model can predict missing data.  By construction, 

R
2
X will always be greater than Q

2
.  The difference between R

2
X and Q

2
 should not be 

too large.  In our case, a 0.3 threshold was set. 

PCs were determined to be significant when meeting a number of requirements.  

The eigenvalue should be greater than 1.  Q
2
 values should increase, compared to the 

previous PC, indicating that inclusion of the PC improves model prediction.  For each 

variable, similar quality metrics, R
2
XV and Q

2
V, are determined and used to compute the 

global R
2
X and Q

2
 values.  We can use these metrics to judge variable quality.  The 
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threshold for variable quality is dependent on the construction of the model.  Variables 

with R
2
XV values greater than A/K, where K is the number of response variables and A 

is the number of principal components, are considered well fit by the model.  Within 

SIMCA-P+, PC significance is further evaluated though cross-validation metrics.  

Significant PCs can meet several significance criteria and determined to be significant 

according to rules, e.g.  Rule 1 (R1), in which Q
2
 is greater than a limit set by the number 

of PCs used in the model or Rule 2 (R2), in which Q
2
V is greater than the limit for at 

least 20% of X variables (K>25) or sqrt(K)*log10(max(10,K-20)) when K≤25.  

Otherwise, the PCs were determined to be not significant (NS).  

Quality of observations can also be used to determine the merit of a model.  Plots 

of observations in the Hotelling’s T
2
 indicate whether there are strong outliers, which 

could skew modeling fitting.  Thresholds are set, under which 99% or 95% of the 

observations must reside, such that strong outliers do not have an overwhelming 

influence on construction of the PCs.  The distance to the model in X space (DModX) 

plot is a sum of observation residuals that remain after fitting with 2 PCs.  Falling below 

the Dcrit threshold indicates that an observation is well explained.  The DModX is a test 

for moderate outliers. 

A.3  PCA Model of ICW Time Course Data 

Input data for PCA consists of a set of observations, in our case individual 

replicates from each time point (3 replicates x 11 time points = 33 observations).  Each 

observation was itself a vector composed of a set of measurements from each of the 8 

response variables.  Thus our PCA model encompassed 264 data points in a 33x8 matrix, 

containing descriptions of A549 multivariate phenotypes throughout the progression of 
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EMT.  The ICW data was fit by 2 PCs, with roughly 82% of variance explained 

(R
2
X=0.82) and variable prediction through cross-validation with a Q

2
=0.58.  

Replicate experiments of samples obtained at the same time points closely 

followed the same trajectory through the latent variable space, demonstrating that i) the 

PCs were able to resolve differences in expression profiles according to its time of 

treatment, and ii) that replicate measurements were tightly correlated.  Importantly, this 

was an unsupervised approach, meaning that no explicit information about grouping or 

ordering, such as treatment time or replicate number, was included as an input variable.  

The inherent structure of the data, i.e. the collection of dynamic response profiles, is 

responsible for the grouping of similar time points and differentiation of dissimilar time 

points.  Thus the variance contained within the input data is representative of a biological 

response and not due to user-biased ordering or technical variation.  

 

 

 

Table A.2  ICW PCA Quality Metrics. 

Overview of quality metrics for the PCA model of EMT time course by ICW. 

 Eigenvalue R
2
XPC R

2
Xcum Q

2
PC Q

2
cum CV Sig. 

Component 1 3.43 0.429 0.429 0.059 0.059 R2 

Component 2 3.12 0.390 0.819 0.552 0.579 R1 
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Figure A.2  Quality Metrics for the PCA of ICW Data of the EMT Time Course. 

A)  The Hotelling’s T
2
 plot outlines the limits under which 95% and 99% of the 

observations should reside.  B)  The DModX is a test for moderate outliers (greater than 

Dcrit).  C)  Variables are considered well explained if their R
2
VX value, i.e. explained 

variance by 2 PCs, is greater than A/K. 
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A.4  PCA Model of Microarray Data 

A.4.1  Additional Details and Analysis 

Data produced by Keshamouni et al. in 2009 was published in the NCBI Gene 

Expression omnibus as raw data. (Keshamouni et al., 2009) Each time point was 

normalized to the expression of the housekeeping genes ACTB, GAPDH, HPRT1, B2M, 

and RPLP0.  Further, the fold-change was calculated with respect to the mean of the 

untreated controls.  Data corresponded to log-transformed fold-change from the untreated 

condition.  The 26 observation by 59 variable data matrix was fit by 2 PCs (R
2
X=0.82) 

and cross-validation was of high quality (Q
2
=0.77).  The transcript PCA model of EMT 

phenotype dynamics demonstrated a correlation structure that is in many ways similar to 

the ICW PCA model.  The phenotype exhibited a similar rotational trajectory, though in a 

clockwise manner contrasting the counter-clockwise trajectory observed in the ICW 

model (Figure 4.4-A, 4.2-A).  In essence, PC2 was reflected about the origin compared to 

the ICW model due to the weighting of the variables along PC2 during model fitting.  

The positive orientation of the PC was assigned to the side of the origin with the greatest 

total loading; however the qualitative difference did not affect the 

correlation/anticorrelation relationships within the model. 
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A.4.2  Comparison of PCR and Microarray Change in Gene Expression 

 

Figure A.3  PCR & Microarray Transcript Concordance In TGFβ Response. 

Comparison of the change in gene expression following TGFβ-treatment determined by 

PCR with values reported by Keshamouni et al., which were determine by microarray.  

The fold-change values determined by PCR and via microarray at 24 (blue) and 72 (red) 

hours were Log10-transformed and the correlation measured (summarized in Table S6). 

 

 

 

Table A.3  PCR & Microarray Transcript Correlation In TGFβ Response. 

Correlation between change in gene expression determined by PCR and microarray 

reported by Keshamouni et al. 

PCR vs.  Microarray 24 Hours 72 Hours 

Pearson r (95% CI) 0.464 (0.110,0.714) 0.657 (0.375,0.827) 

R
2
 0.216 0.431 

p value (two-tailed; α=0.05) 0.0128 0.0001 
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A.5  Overview of Model Quality 

 

Figure A.4  Quality Metrics for the PCA of EMT Time Course Microarray Data. 

 

 

 

Table A.4  Microarray Data PCA Quality Metrics. 

Overview of quality metrics for the EMT time course PCA model with microarray data. 

 Eigenvalue R
2
XPC R

2
Xcum Q

2
PC Q

2
cum CV Sig. 

Component 1 18.34 0.706 0.706 0.667 0.667 R1 

Component 2 3.06 0.118 0.823 0.293 0.765 R1 
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A.6  Overview of Model Variables 

 

 

 

Table A.5  Microarray Transcripts Chosen as PCA Variables. 

Transcript expression of A549 cells were measured by Keshamouni et al. in 2009 was 

published in the NCBI Gene Expression Omnibus (GSE17708) as raw data. (Keshamouni 

et al., 2009) The following markers were selected for inclusion in our PCA model. 

 

Common Name Gene Symbol Grouping 

E-cadherin 

CDH1 Epithelial 

Claudin 1 

CLDN1 Epithelial 

Keratin 18 

KRT18 Epithelial 

Tight Junction Protein 1 (ZO-1) 

TJP1 Epithelial 

Keratin 8 

KRT8 Epithelial 

Desmoplakin 

DSP Epithelial 

Mucin 1 

MUC1 Epithelial 

Keratin 19 

KRT19 Epithelial 

N-cadherin 

CDH2 Mesenchymal 

Vimentin 

VIM Mesenchymal 

alpha Smooth Muscle Actin (αSMA) 

ACTA2 Mesenchymal 

Zinc finger E-box-binding homeobox 1 

ZEB1 Mesenchymal 

Zinc finger E-box-binding homeobox 2 

ZEB2 Mesenchymal 
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Table A.5 continued 

Common Name 
Gene 

Symbol 
Grouping 

Snail 

SNAI1 Mesenchymal 

Slug 

SNAI2 Mesenchymal 

β-catenin 

CTNNB1 Mesenchymal 

SMAD family member 2 (Smad2) 

SMAD2 Smad 

SMAD family member 3 (Smad3) 

SMAD3 Smad 

SMAD family member 4 (Smad4) 

SMAD4 Smad 

Albumin 

ALB Antioxidant 

Catalase 

CAT Antioxidant 

Cytochrome b-245, beta polypeptide 

CYGB Antioxidant 

Glutamate-cysteine ligase, catalytic subunit 

GCLC Antioxidant 

Glutamate-cysteine ligase, modifier subunit 

GCLM Antioxidant 

Glutathione peroxidase 1 

GPX1 Antioxidant 

Glutathione peroxidase 2 (gastrointestinal) 

GPX2 Antioxidant 

Glutathione peroxidase 4 (phospholipid hydroperoxidase) 

GPX4 Antioxidant 

Glutathione reductase 

GSR Antioxidant 

Peroxiredoxin 1 

PRDX1 Antioxidant 

Peroxiredoxin 3 

PRDX3 Antioxidant 

Peroxiredoxin 4 

PRDX4 Antioxidant 

Peroxiredoxin 5 

PRDX5 Antioxidant 

Peroxiredoxin 6 

PRDX6 Antioxidant 

Superoxide dismutase 1, soluble 

SOD1 Antioxidant 



www.manaraa.com

 186 

Table A.5 continued 

Common Name 
Gene 

Symbol 
Grouping 

Superoxide dismutase 2, mitochondrial 

SOD2 Antioxidant 

Thioredoxin 

TXN Antioxidant 

Thioredoxin 2 

TXN2 Antioxidant 

Thioredoxin reductase 1 

TXNRD1 Antioxidant 

Selenoprotein P, plasma, 1 

SEPP1 Antioxidant 

NAD(P)H dehydrogenase, quinone 1 

NQO1 Antioxidant 

Ferritin, heavy polypeptide 1 

FTH1 Antioxidant 

glutaredoxin 

GLRX Antioxidant 

Glutaredoxin 2 

GLRX2 Antioxidant 

Nuclear factor, erythroid 2-like 2 

NFE2L2 Antioxidant 

Aldehyde oxidase 1 

AOX1 Pro-oxidant 

Cytoglobin 

CYBB Pro-oxidant 

Neutrophil cytosolic factor 1 

NCF1 Pro-oxidant 

Neutrophil cytosolic factor 2 

NCF2 Pro-oxidant 

NADPH oxidase 4 

NOX4 Pro-oxidant 

Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H 

synthase and cyclooxygenase) 

PTGS2 Pro-oxidant 

Uncoupling protein 2 (mitochondrial, proton carrier) 

UCP2 Pro-oxidant 
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A.7  Luminol Assay for Hydrogen Peroxide 

A.7.1  Background 

Luminol is a probe that undergoes chemiluminescence following oxidation.  The 

chemistry of luminol (LH
-
) is complex in that is capable of both one and two-electron 

oxidation by a number of reactive species, the key step being the formation of the α-

hydroxy-hydroperoxide intermediate (LOOH
-
), which spontaneously decomposes to the 

excited 3-aminophthalate, which emits light. (Merényi et al., 1990) This protocol is 

adapted from the reported procedure to measure H2O2 in a number of experimental 

settings with luminol/sodium hypochlorite derived chemiluminescence, which was earlier 

developed for to assay H2O2 production upon neutrophil activation. (Mueller, 2000; 

Mueller and Arnhold, 1995) Early adoption of luminol to measure reactive oxygen 

species makes use of luminol alone. (Allen and Loose, 1976) When used in this manner, 

the luminescence is not specific to any particular reactive species and cannot be used in a 

quantitative manner. (Wardman, 2007) Inclusion of sodium hypochlorite (NaOCl) shifts 

the reaction into the two-electron pathway through efficient conversion of LH- into the 

H2O2-reactive intermediate, diazaquinone (L). (Brestel, 1985) The chemiuminesence 

produced in this assay is quantitatively dependent on both the concentration of OCl
-
 and 

H2O2. (Arnhold et al., 1991) This is evident when assessing the inhibition of 

luminescence of the luminol/hypochlorite assay in the presence of numerous agents.  

Notably, thiol-containing compounds attenuate signal, presumably through competitive 

reaction with OCl
-
.  Moreover, catalase had the strongest inhibition among those tested, 

while superoxide dismutase, at lower levels, increased signal, presumably through 

dismutation of O2˙
-
 into H2O2. (Arnhold et al., 1993) Thus, the luminol/hypochlorite 
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assay can be used to determine H2O2 concentrations when compared against a known 

standard.  Such applications have been highlighted in cell homogenates and intact cells. 

(Mueller, 2000) More recently, is has been used for comparison of bolus and glucose 

oxidase/catalase derived H2O2, where the first-order kinetics of H2O2 turnover was 

determined through sampling the supernatant for H2O2 at sequential time points 

following bolus addition. (Sobotta et al., 2013) Using this approach, the following 

protocol aims to measure the capacity of a population of cells to eliminate H2O2 from the 

media over time and, thus, provide a semi-quantitative insight into the antioxidant 

capacity of the cells. 

 

A.7.2  Model Construction  

In this assay, we will assume that the degradation of H2O2 will be proportional to 

the number of cells per well and the concentration of H2O2, such that the rate equation is 

second-order.  The change in the quantity of H2O2 (Q) is therefore defined as: 

𝑑𝑄

𝑑𝑡
=  −𝑘𝑁[𝐻2𝑂2] 

where we can substitute [H2O2] = Q/V (V = volume of media) to arrive at: 

𝑑𝑄

𝑑𝑡
=  −𝑘𝑁

𝑄

𝑉
    ⟹      

𝑑𝑄

𝑑𝑡
=  −

𝑘

𝑉
𝑁𝑄 

We are able to measure [H2O2], time, and the relative number of cells using the 

Hoechst stain.  Assume that the Hoechst stain is proportional to the number of cells such 

that N = βS. 
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𝑑𝑄

𝑑𝑡
=  −

𝑘

𝑉
𝛽𝑆𝑄 

We then redefine k in relative terms for comparison of cells of equal staining per 

volume by setting kdeg = kβ/V. 

𝑑𝑄

𝑑𝑡
=  −𝑘𝑑𝑒𝑔𝑆[𝐻2𝑂2] 

We wish to fit our data to our model in order to derive the rate constant kdeg.  We 

are able to measure the H2O2, time, and Hoechst stain.  To simplify the approach, we 

introduce the latent variable α to allow two-variable fitting ([H2O2], α) to estimate kdeg, 

rather than trying to fit the data to a three-variable model ([H2O2], N, t).  Let α = St such 

that can determine α from the data.  Thus, dα = Sdt, which can be used to simplify the 

previous equation: 

𝑑𝑄

𝑑𝛼
=  −𝑘𝑑𝑒𝑔𝑄    ⟹     

𝑑𝑄

𝑄
=  −𝑘𝑑𝑒𝑔𝑑𝛼 

ln|𝑄(𝛼)| =  −𝑘𝑑𝑒𝑔𝛼 + 𝐶0     ⟹     𝑄(𝛼) =  𝐶1𝑒−𝑘𝑑𝑒𝑔𝛼 

Where we can solve for the initial condition Q(α) = Q0 = [H2O2]iV at α=0 (t=0), 

which reduces to C1 = Q0.  Thus, the governing equation for Q and  [H2O2] with respect 

to our latent variable α is: 

𝑄(𝛼) =  𝑄0𝑒−𝑘𝑑𝑒𝑔𝛼 

[𝐻2𝑂2](𝛼)𝑉 =  𝑄0𝑒−𝑘𝑑𝑒𝑔𝛼 = [𝐻2𝑂2]𝑖𝑉𝑒−𝑘𝑑𝑒𝑔𝛼    

[𝐻2𝑂2](𝛼) = [𝐻2𝑂2]𝑖𝑒
−𝑘𝑑𝑒𝑔𝛼 

This model of simple exponential decay can be used to fit to the parameter kdeg 

from the data obtained from the luminol assay.  As the kdeg is an aggregate value 
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dependent on density and staining, the comparison between kdeg values of different 

samples can only be made within the same assay and relative to a standard. 

A.7.3  Protocol 

Cells were grown and treated in 96-well plates with each row representing a 

different treatment condition in an 8x8 configuration with 4 empty columns.  Each 

treatment was performed with 2 technical replicates in adjacent rows.  The number of 

columns corresponds to the number of time points to be sampled to measure H2O2 

kinetics.  In brief, 100 µl of 20 µM H2O2 in HBSS with glucose, Ca
2+

, and Mg
2+

 to 

columns of the 96-well plate at specified times.  Following treatment, 50 µl of the 

supernatant was transferred to a 96-well plate and subjected to H2O2 concentration 

measurement via luminol/hypochlorite assay.  A BioTek Synergy 4 plate reader was use 

to automate dispensing of 50 µl of 50 µM luminol to the isolated supernatant, which was 

followed by 5 second of shaking.  Next, 25 µl of 1 mM sodium hypochlorite was 

dispensed into the well and the resultant luminescence measure for 2 seconds.  The cells 

remaining in the 96-well plate for culture were treated with 1 mg/ml Hoechst 33342 for 

30 min at 37˚C.  The cell density was measured by fluorescence with excitation at λ = 

350 nm and absorbance measured at λ = 461 nm.  The H2O2 concentration in each well 

was calculated based on the standard curve.  For each well, the variable α (α = N*t) was 

calculated by multiplying the time of H2O2 incubation with the Hoechst staining value.  

The decay rate for each treatment condition was determined by fitting to a non-linear 

model of one-phase decay in Prism.  H2O2 was fit as a function of the variable α with 

model constraints of shared an initial H2O2 concentration and lower asymptotic limit.  

The relative kdeg values for each treatment condition were determined through division by 
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the kdeg value measured for the untreated condition.  The significance of deviation from 

the initial condition was determined by one-way ANOVA. 

A.7.4  Results 

The H2O2 concentration in each well was calculated based on the standard curve.  

For each well, the variable α (α = N*t) was calculated by multiplying the time of H2O2 

incubation with the Hoechst staining value.  The decay rate for each treatment condition 

was determined by fitting to a non-linear model of one-phase decay in GraphPad Prism.  

H2O2 was fit as a function of the variable α with model constraints of shared an initial 

H2O2 concentration and lower asymptotic limit.  For each replicate, an alternative model 

was tested in which the kdeg values for each condition were shared.  For each replicate, 

the model with independent kdeg values was determined to be the more appropriate 

model, having a greater R
2
.  The relative kdeg values for each treatment condition were 

determined through division by the kdeg value measured for the untreated condition. 

 

 

 

Table A.6  Overview of Relative kdeg Values and Model Fit Quality.  

Replicate Untreated 1 Day 2 Days 3 Days Goodness of Fit 

1 1 0.736 0.771 0.795 R
2
 = 0.9353 

2 1 0.665 0.937 0.872 R
2
 = 0.9020 

3 1 0.714 0.893 0.673 R
2
 = 0.8923 
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A.8  Alternate Mechanisms of Increased GSSG/2GSH Redox Potential 

 

 

Figure A.5  ViCell XR Analysis of A549 Cells Following TGFβ Treatment. 

A)  Cell viability determined by absence of Trypan Blue staining decreased 1% following 

96 hours TGFβ treatment.  B)  Cell circularity was high (>0.8) and not significantly 

affected by TGFβ treatment.  C)  Mean cell diameter decreased following TGFβ 

treatment.  D)  Spherical cell volume was calculated from the measured cell diameters.  

Data are the result of 3 independent biological replicates (n=3) and plotted as mean ± 

standard error of the mean.  Time points differing significantly from the untreated 

control, as determined by one-way ANOVA (** p=0.05), are enclosed within the shaded 

regions.  Note: ANOVA was not performed for cell volume estimates.   



www.manaraa.com

 193 

 

Figure A.6  GSH/GSSG-Glo Assay GSH Standard Curve. 

Log2 serial dilutions of 16 µM GSH were loaded in each experiment.  A non-linear 

standard curve, using a one-phase association function, was fit and used to calculate total 

GSH and reduced GSSG concentrations. 

 

 

 

 

 

Figure A.7  Diminished GSH and GSSG Levels Following TGFβ Treatment. 

Following 48 and 96 hours of 200 pM TGFβ treatment, decreased intracellular A) total 

GSH, B) reduced GSH, and C)  GSSG levels were observed.  Data are the result of 3 

independent biological replicates (n=3) and plotted as mean ± standard error of the mean.  

Time points differing significantly from the untreated control, as determined by one-way 

ANOVA (* p < 0.1), are enclosed within the shaded regions.   
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A.8.1  Confounding by Non-Viable Cells 

GSSG and GSH concentrations were measured from pooled cells, in which some 

degree of non-viable cells will be present.  ViCell XR analysis revealed a slight but 

significant 1% decrease in cell viability in the 96 hour treated condition (97.8% viable) 

compared to the untreated condition (98.8% viable).  Following TGFβ treatment, the 

GSSG/2GSH redox potential increases (Figure 4.6-C).  The GSSG/2GSH redox potential 

of dead and apoptotic cells is known to be higher than live cells (Schafer and Buettner, 

2001).  Therefore, we considered the possibility that TGFβ has no effect on the redox 

potential of live cells but is increasing the overall redox potential though an increased 

proportion of non-viable, high redox potential cells.  We define the unknown redox 

potential of live cells as El and of non-viable cells as En (mV units).  Then we allow the 

overall observed redox potentials to be a function of the proportion of viable and non-

viable cells and their respective redox potentials: 

Untreated Condition:    0.988 ∙ 𝐸𝑙 + 0.012 ∙ 𝐸𝑛 = −238.1 𝑚𝑉 

96 Hour Treated Condition   0.978 ∙ 𝐸𝑙 + 0.022 ∙ 𝐸𝑛 = −231.4 𝑚𝑉 

 

Then solving the two-equation system, we arrive at: 

𝐸𝑙 =  −246.1 𝑚𝑉    𝐸𝑛 = +423.9 𝑚𝑉 

Without prior constraint, we find that El < En, which is consistent with our 

hypothesis.  However, the +424 mV value for the redox potential of non-viable cells 

would indicate that, essentially, 100% of the cellular GSH is bound in GSSG.  Further, 

the redox potential of non-viable cells is reported to be in the -200 to -160 mV range 

(Schafer and Buettner, 2001), which is quite substantially lower than +424 mV.  Thus, 
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the increase in redox potential following TGFβ treatment cannot adequately be explained 

by decreased cell viability and a confounding affect by non-viable cells. 

A.8.2  Effects of Cell Volume on GSH Concentration Calculations 

Accurate measurement of the GSSG/2GSH redox potential relies on absolute, not 

relative, measurements of GSSG and GSH concentrations within the cell of interest.  

Therefore, we sought to determine the effect of cell volume on the calculation of the 

intracellular GSH and GSSG and its subsequent determination of redox potential.  In the 

main scenario, we calculated the intracellular GSSG and GSH concentrations using 

treatment condition-specific volumes (Figure A.5-D), which were used to calculate their 

redox potentials (Figure 4.6-C)  To examine the effect of cell volume, we considered the 

possibility that the cell volume is unaffected by TGFβ and that the cells in all conditions 

have a common cell volume.  Further, we considered the possibilities that this volume 

was our smallest or largest measurements, 2.3 and 2.8 pl.  In the small volume scenario, 

the 96 hour condition redox state is unaffected while the redox state of the untreated and 

48 hour treated condition decrease compared to the main scenario (Figure A.8-A; Figure 

4.6-C).  Alternately, when using the largest volume for calculations, the redox potential 

of the untreated condition remains unaffected while the redox potential of the 48 and 96 

hour treated conditions increase compared to the main scenario (Figure A.8-B; Figure 

4.6-C).  In each of these alternative scenarios, the difference of redox potential between 

the untreated and 96-hour treated condition increased from +6.5 mV to ~ +9mV.  

Therefore, our use of treatment condition specific cell volumes to calculate intracellular 

GSSG and GSH reflects the most conservative estimate of the increase in GSSG/2GSH 

redox potential following TGFβ treatment. 
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Figure A.8  Alternate Volumes in Calculations of GSSG/2GSH Redox Potential. 

A)  Redox potentials using the smallest measured cell volume (2.3 pl) for GSSG and 

GSH concentration calculations.  B)  Redox potentials using the largest measured cell 

volume (2.8 pl) for GSSG and GSH concentration calculations.  Data are the result of 3 

independent biological replicates (n=3) and plotted as mean ± standard error of the mean.  

Time points differing significantly as determined by one-way ANOVA (** p=0.05). 
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A.9  Aggregated Data PCA Models 

A.9.1  Aggregated Data Model Quality 

To obtain the aggregated data matrix, each of the data sets were prepared and then 

merged into a full aggregated set.  For each time point, replicate measurements were 

averaged.  Data was derived from the microarray, ICW time course of EMT, CM-

H2DCF-DA, H2O2 degradation, and GSSG/2GSH redox couple assays (Figure 4.7).  

Microarray transcripts of interest were retained while the majority of data were culled.  

Transcripts of interest were those that had previously been reported in the context of ROS 

production and degradation as well as the regulation of the GSSG/2GSH redox couple.  

Within SIMCA-P+, each of variable sets was prepared in a similar manner as previously.  

Microarray, ICW, CM-H2DCF-DA, and H2O2 degradation data were entered as fold-

change values and the GSH/GSSG values were entered as concentration and potential 

values.  The data were mean-centered and unit-variance scaled.  Due to the nature of data 

aggregation, technical replicates are not consistent from one experimental modality to 

another.  By averaging technical replicates for each time point, we sacrifice potentially 

informative inter-assay variability for the ability to evaluate the relationships present in 

disparate assays (Figure 4.7-A). 
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Figure A.9  Quality Metrics for the PCA of Aggregated EMT Time Course Data. 

 

 

 

Table A.7  Aggregated Data PCA Quality Metrics. 

Overview of quality metrics for the EMT time course PCA model with aggregated data. 

 Eigenvalue R
2
XPC R

2
Xcum Q

2
PC Q

2
cum CV Sig. 

Component 1 2.86 0.573 0.573 -0.026 0.1 R2 

Component 2 1.77 0.354 0.927 0.573 0.530 R1 
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A.9.2  ICW, Microarray, and CM-H2DCF-DA Aggregated Data Model 

We constructed a model consisting of microarray transcript expression, ICW 

protein expression, and CM-H2DCF-DA oxidation data during the time course of EMT 

(Figure A.10).  Similar to the model presented in Figure 4.7, this model is populated with 

time-point averaged data.  Notably, the overall relationships between variables in the 

ICW and microarray transcript expression are maintained.  The correlation between pairs 

from ICW and microarray studies is an apparent feature.  This is further detailed below 

(Figure A.11).  Additionally, the expression of SNAI1 (Snail) is correlated with pSmad3 

expression, which is a known inducer of Snail expression (Figure A.10-C) 

 

 

 

Table A.8  ICW, Microarray, and CM-H2DCF-DA Aggregated Data PCA Quality. 

Overview of quality metrics for the EMT time course PCA model with ICW, microarray, 

and CM-H2DCF-DA aggregated data. 

 Eigenvalue R
2
XPC R

2
Xcum Q

2
PC Q

2
cum CV Sig. 

Component 1 5.84 0.649 0.649 0.441 0.441 R1 

Component 2 1.77 0.177 0.846 0.413 0.672 R1 
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Figure A.10  Overview of ICW, Microarray, and CM-H2DCF-DA Aggregated PCA . 
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A.9.3  Paired ICW & Microarray Data PCA Model.  

Data from the full aggregated data model were used.  All variables were then 

eliminated except for those with paired protein (ICW) and transcript (microarray) 

expression. 

 

 

 

 

Table A.9  Paired ICW & Microarray Data PCA Quality. 

Overview of quality metrics for the EMT time course PCA model with paired ICW & 

microarray data. 

 Eigenvalue R
2
XPC R

2
Xcum Q

2
PC Q

2
cum CV Sig. 

Component 1 6.01 0.668 0.668 0.288 0.288 R1 

Component 2 2.12 0.235 0.904 0.578 0.699 R1 
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Figure A.11  Overview of Paired ICW & Microarray Data PCA . 
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A.10  EMT & Antioxidant/TGFβ Inhibitor Intervention PCA Model 

PCA of ICW expression data, shown in Figure 4.9, consisted of 10 treatment 

conditions assessed with 10 response variables (Slug was excluded due to poor fitting).  

The resultant model was fit by 2 PCs (R
2
X=0.74) and cross-validated (Q

2
=0.50). 

 

 

 

 

Table A.10  EMT & Antioxidant Data PCA Quality. 

Overview of quality metrics for the EMT time course PCA model with EMT & 

antioxidant data. 

 Eigenvalue R
2
XPC R

2
Xcum Q

2
PC Q

2
cum CV Sig. 

Component 1 4.2 0.417 0.417 0.131 0.131 R1 

Component 2 3.3 0.326 0.744 0.426 0.502 R1 
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Figure A.12  Overview of Replicate Scores of EMT & Antioxidant PCA . 
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Figure A.13  Overview of Quality Metrics From EMT & Antioxidant PCA. 
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APPENDIX B  SUPPLEMENTARY DATA AND ADDITIONAL 

ANALYSES ON THE INVESTIGATIONS OF THE KINETIC 

ASPECTS OF SIDE POPULATION FORMATION 
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B.1  Flow Cytometry Multicolor Surface Marker Staining 

 

 

 

Figure B.1  Multicolor Flow Cytometry Analysis of Surface Marker Staining 

Representative density scatter plots of staining of A549 cells maintained in culture for 4 

days with 0, 1, 10, and 100 pM TGFβ treatment (rows).  Columns correspond to the 

pairwise plots of PE, PE-Texas Red, and APC detection channels with compensated 

arbitrary fluorescence units.  Surface markers were stained with anti-PE-CF594/E-

Cadherin (PE-Texas Red Channel), PE/N-Cadherin (PE Channel), and APC/ABCG2 

(APC Channel), antibodies and cells counter-stained with SYTOX Blue to exclude dead 

cells.  Density plots correspond to summary of geometric means displayed in Figure 5.3-

A & B.   



www.manaraa.com

 208 

B.2  Multilinear Modeling of Hoechst Score Statistics & %SP 

B.2.1  Multilinear Model Formulation 

Numerous Hoechst Score metrics were observed to differ between +FTC and -

FTC conditions in proportion to the associated SP size (Figure 5.5-C).  Differences in 

each of the metrics is correlated with %SP and can stratify the SP time course data in a 

manner that is consistent with the observed trends using manual gating to measure %SP 

(Figure 5.4-A, B.2).  We hypothesized that a multiliner model containing a combination 

of the metrics may provide a means to objectively estimate the %SP in a given sample.  

We constructed 6 models, consisting of different combinations of metrics and evaluated 

them for their quality using SP time course data for training (Table B.1).  The optimal 

model under these conditions was Model 3, consisting of ∆HRS, ∆HBS, and ∆HSC 

Hoechst metrics.  The model fit the %SP with little residual error (Figure B.3-A) and 

stratified time course data well (Figure B.3-B). 

B.2.1.1  General Model for % SP Estimation: 

𝑦 = 𝑏0 + 𝑏1∆𝐻𝑅𝑆 + 𝑏2∆𝐻𝐵𝑆 + 𝑏3∆𝐻𝑅𝑆𝑆𝐷 + 𝑏4∆𝐻𝐵𝑆𝑆𝐷 + 𝑏5∆𝐻𝑆𝐶 

𝑦 :   % SP predicted by multilinear model (%SPMLE) 

∆𝐻𝑅𝑆 :  Change in Hoechst Red Score Mean 

∆𝐻𝐵𝑆 :  Change in Hoechst Blue Score Mean 

∆𝐻𝑅𝑆𝑆𝐷 :  Change in Hoechst Red Score Standard Deviation 

∆𝐻𝐵𝑆𝑆𝐷 :  Change in Hoechst Blue Score Standard Deviation 

∆𝐻𝑆𝐶 :   Change in Hoechst Score Covariance 



www.manaraa.com

 209 

B.2.2  Model Evaluation & Selection 

Models were scored on several criteria.  The F-value for each of the models was 

much greater than the F-crit level, accordingly, the p-values were very small.  The 

models exhibited a range of R
2
 values, though most fit the data very well.  Finally, the 

residual sum of squares (RSS) values were used to compute relative differences in the 

AICc values for the model.  AICc scores a model’s ability to fit data accurately and 

efficiently, incorporating both the quality of the model fit (RSS) and the complexity of 

the model (k) into its score.  These results indicate that Model 3 is the most appropriate 

model (Table B.1). 

B.2.2.1  AICc Equation 

AICc is used when the ratio of observations to model parameters is low.  It 

prevents overestimation of model quality for small n conditions.  It may also be used in 

general as the additional term converges to 0 as n becomes large. 

𝐴𝐼𝐶𝑐 = 𝑘 + 𝑛 (ln (
2𝜋𝑅𝑆𝑆

𝑛 − 𝑘
) + 1) +

2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 

  



www.manaraa.com

 210 

 

 

 

 

 

Figure B.2  Trends of Differences in Hoechst Score Statistics by Time in Culture. 

The difference between Hoechst Score statistics (X) are plotted against culture 

conditions and are determined by X = X-FTC - X+FTC where A) HRSmean=change in 

Hoechst Red Score mean, B) HRSSD=change in Hoechst Red Score standard deviation, 

C) HSC=change in Hoechst Red & Blue Score covariance, D) HBSmean=change in 

Hoechst Blue Score mean, E) HBSSD=change in Hoechst Red Score standard deviation, 

F) Hproj=change in Hoechst Red & Blue Score means projected onto diagonal.  
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Figure B.3  Multilinear Model Estimation of %SP Using Hoechst Statistics. 

A multilinear model (Model 3) consisting of HRSmean, HBSmean, & HSC x-variables 

was constructed by regression against the y variable %SP.  The model was trained using 

the %SP time course data (Figure 5.4-A).  A)  The multilinear model measurement for 

each data point (%SPMLE) is plotted against its corresponding %SP measured by manual 

gating approaches.  The plotted line corresponds to perfect concordance between manual 

gating and multilinear estimate approaches.  B)  The results of the SP time course 

experiment are re-plotted using multilinear model measurement of %SP values. 
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Table B.1  Overview of Multilinear Models & Fit. 

Coefficients are the result of multilinear regression using changes in Hoechst statistics to 

estimate %SP.  Data from the time course experiment (Figure 5.4-A) were used to train 

the model.  The quality of multilinear model estimation of %SP (%SPMLE) compared to 

the %SP measured by manual gating is displayed in terms of R
2
 and RSS.  The models 

were compared to each other in terms of complexity and quality with their ∆AICc values.  

Additional metrics of multilinear model quality can be found in Table B.2. 

Model 
Coefficients 

(𝑏𝑖 = 0 unless otherwise indicated) 
R

2
 RSS ∆AICc 

1 
𝑏0 = 0.004,    𝑏1 = −9.36,   𝑏2 = −17.3, 
 𝑏3 = −0.139,   𝑏4 = 3.24, 𝑏5 = 13.6 

0.951 119.9 5.72 

2 
𝑏0 = −0.271,    𝑏1 = −8.73, 𝑏2 = −19.5,

𝑏3 = 9.36, 𝑏4 = 20.4 
0.950 121.0 3.11 

3 
𝑏0 = 0.0238, 𝑏1 = −9.95,

𝑏2 = −16.3,   𝑏5 = 15.3 
0.951 199.9 0 

4 
𝑏0 = 4.79, 𝑏3 = −112, 𝑏4 = −161,

𝑏5 = 163 
0.813 453.4 51.8 

5 𝑏0 = 0.127, 𝑏1 = −7.21, 𝑏2 = −30.8 0.877 297.4 32.8 

6 𝑏0 = 2.39, 𝑏3 = 34.2, 𝑏4 = 30.5 0.672 794.1 71.1 

 

 

 

Table B.2  Extended Overview of Multilinear Model Quality Results. 

Model k F-value (crit) p-value R
2
 RSS ∆AICc 

1 6 126 (3.3) 1.5E-20 0.951 119.9 5.72 

2 5 162 (3.6) 1.7E-21 0.950 121.0 3.11 

3 4 225 (3.9) 6.7E-23 0.951 199.9 0 

4 4 51 (3.9) 7.9E-13 0.813 453.4 51.8 

5 3 129 (4.4) 3.9E-17 0.877 297.4 32.8 

6 3 37 (4.4) 1.9E-9 0.672 794.1 71.1 

  



www.manaraa.com

 213 

B.3  Hoechst Score PDF Calculation of ∆FTC & ∆SP 

 

Figure B.4  Overview of FTC & SP Calculations & Day 4 Plots. 

A) FTC plots are generated by subtracting the PDF+FTC distribution from the PDF-FTC 

distribution.  The example shown is the formation of the Day 4 0 pM TGFβ (control) 

condition (green box) from the difference of the average PDF-FTC and PDF+FTC 

distributions from 3 experimental replicates.  Red regions of the ∆FTC plot correspond to 

regions that have higher density in the -FTC condition while blue regions have density in 

the +FTC condition.  B)  The SP plot for a given sample is generated by subtracting the 
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∆FTC distribution of the control sample (∆FTCctrl, green box) from the ∆FTC distribution 

for the sample, (∆FTCD4-1pM, purple box), which gives rise to the ∆SP (∆SPD4-1pM, orange 

box).  Red regions of the ∆SP plot correspond to regions with higher density in the 

sample condition while blue regions have higher density in the control condition.  C)  The 

∆FTC and ∆SP plots are displayed for the Day 4 samples in the SP time course 

experiment.  The %SPproj is reported for each sample. 

  



www.manaraa.com

 215 

B.4  Single-Cell Clones Regenerate Side & Non-Side Populations 

A549 cells were stained with anti-ABCG2 antibody and sorted by high and low-

ABCG2 expression into individual wells of a 96-well plate (Figure B.6-A).  The cells 

were then expanded in culture before being prepared for side population analysis.  

Colonies from both high and low-ABCG2 expressing cells we found to exhibit side and 

non-side population cells (Figure B.6-B).  The size of the SP was measure with both 

manual gating approaches and multilinear model estimation of %SP using Hoechst Score 

metrics (Figure B.6-B,C), which were found to be in agreement. 

 

 

 

 

Figure B.5  SP & NSP Cells Arrise from Single-Cell A549 Clonal Cell Lines. 

A)  Schematic of the isolation and expansion of low- and high-ABCG2 expressing clonal 

cell lines from the parent A549 cell line prior to SP analysis.  B)  Manual and multilinear 

model measurement of %SP in expanded low- and high-ABCG2 expressing clonal cell 

lines following expansion in culture for 30 days.  C)  Comparison of manual and 

multilinear model measurement of %SP in expanded low- and high-ABCG2 expressing 

clonal cell lines.  The plotted line corresponds to perfect concordance between manual 

and multilinear model measurement.   
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B.5  Multiscale Ensemble Modeling of SP Kinetics 

B.5.1  Sources of Experimental Distributions for In silico Populations 

 

 

 

 

 

Figure B.6  ABCG2 and Hoechst Binding Site Distributions 

A)  ABCG2 surface marker staining data from flow-cytometry studies (Figure 5.3-B, 

n=3) converted into PDFs of ABCG2 expression in A549 cells.  Expression levels were 

normalized to the mode of the control condition.  B)  Distribution of Hoechst binding 

sites available in each cell, estimated from the averaged Hoechst Blue distribution from 

all of the +FTC conditions, the genomic DNA content of A549 cells, and Hoechst 

binding site density in genomic DNA. 
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Figure B.7  Whole Cell & Nuclear Radii Distributions of A549 Cells 

A) 2D PDF of Flow Sight imaging cytometry measurements of whole cell and nuclear 

radii using Hoechst stained cells with FTC.  B) 2D Distribution of nuclear radius to 

whole cell radius ratios plotted against whole cell and nuclear radii.  C)  Sampling of N 

cells from a 2D PDF of whole cell and nuclear radii (A) reconstructed as a 2D PDF. 
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B.5.2  In silico Flow Cytometry Considerations 

Most flow cytometric techniques aim to isolate the signal from an individual 

fluorophore to a single detection channel.  The SP assay, however, relies on spectral 

spillover of the Hoechst emission into two detectors, Hoechst Red and Hoechst Blue.  

Inherent spectral differences in DNA-bound (𝐻𝑏) and non-DNA-bound/free (𝐻𝑓)  

Hoechst dyes would indicate that the two forms of Hoechst can influence the detected 

signal in each of these channels (Figure B.9-C).  For example, the quantum yield of 

DNA-bound Hoechst (0.38) is roughly 10-fold larger than that of free Hoechst (0.034). 

(Cosa et al., 2001)  This indicates that it more readily is induced to emit fluorescent light 

upon excitation.  Further, the excitation/emission maxima of Hoechst in the DNA-bound 

form differs from the free form. (Cosa et al., 2001)  The differences in emission spectra 

result in differential emission contributions to each of the detection channels (Figure B.9-

D).  In this schema, a number of factors influence the magnitude of the Hoechst Red and 

Blue emission signals.  Nonetheless, it is a somewhat constrained system in that the 

Hoechst Red signal is composed of emission from both DNA-bound and free Hoechst 

and the Hoechst Blue signal is composed of emission from both. 

Formation of Hoechst signals is based upon the quantities of DNA-bound and free 

Hoechst species within the cell, the spectral properties of the Hoechst species, and the 

spectral properties of the simulated flow cytometer used to excite and measure Hoechst 

fluorescence.  Hoechst Red signal (𝐻𝑅𝑠𝑖𝑔) is the sum of the emission from DNA-bound 

(𝐻𝑏)  Hoechst in the Hoechst Red channel and from free Hoechst (𝐻𝑓) in the Red 

Channel.  The emission from 𝐻𝑏 in the Hoechst Red channel is proportional to its 

excitability (quantum yield, 𝑄𝑏), relative excitation efficiency (𝐸𝑏), the area of spectral 
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emission overlap with the Hoechst Red channel (𝑅𝑏), and the amount of 𝐻𝑏.  Likewise, 

The emission from 𝐻𝑓 in the Hoechst Red channel is proportional to its corresponding 

𝑄𝑓, 𝐸𝑓, 𝑅𝑓, and 𝐻𝑓.  Signal for the Hoechst Blue channel can be similarly constructed. 

𝐻𝑅𝑠𝑖𝑔 = 𝑄𝑏𝐸𝑏𝑅𝑏𝐻𝑏 + 𝑄𝑓𝐸𝑓𝑅𝑓𝐻𝑓 

𝐻𝐵𝑠𝑖𝑔 = 𝑄𝑏𝐸𝑏𝐵𝑏𝐻𝑏 + 𝑄𝑓𝐸𝑓𝐵𝑓𝐻𝑓 

We are then able to modify the representation of this to obtain the linear 

transformation matrix 𝑆. 

[
𝑄𝑏𝐸𝑏𝑅𝑏 𝑄𝑓𝐸𝑓𝑅𝑓

𝑄𝑏𝐸𝑏𝐵𝑏 𝑄𝑓𝐸𝑓𝐵𝑓
] [

𝐻𝑏

𝐻𝑓
] = [

𝐻𝑅𝑠𝑖𝑔

𝐻𝐵𝑠𝑖𝑔
]            𝑆 [

𝐻𝑏

𝐻𝑓
] = [

𝐻𝑅𝑠𝑖𝑔

𝐻𝐵𝑠𝑖𝑔
]              

where 

[
𝑄𝑏𝐸𝑏𝑅𝑏 𝑄𝑓𝐸𝑓𝑅𝑓

𝑄𝑏𝐸𝑏𝐵𝑏 𝑄𝑓𝐸𝑓𝐵𝑓
] = [

𝑠11 𝑠12

𝑠21 𝑠22
] = 𝑆 

The Hoechst Red and Blue signals resulting from linear transformation with the 

signal matrix are arbitrary in that the units do not have a specific meaning.  Nonetheless, 

within a range of Hoechst signals produced under the same circumstances, differences in 

magnitude reflect differences in the quantities of Hoechst dyes used to generate them.  

Therefore, the Hoechst signals can be used to compare staining within populations.  

Similarly, with identical conditions, comparisons can be made across populations.  

Conversion of Hoechst signals into Scores is an approach to make measured changes in 

Hoechst staining more applicable in a broader, less experimentally specific sense. 

  



www.manaraa.com

 220 

 

Figure B.8  Schematics of Kinetic Modeling & In silico Flow Cytometry 

A)  Hoechst staining dynamics were simulated at the single-cell level with each cell 

represented by a set of ODEs governed by mass-action kinetics in a well-mixed three-

compartment system.  The species, compartments, and reactions are depicted.  Each cell 

differs from the rest of the population in terms of volumes, surface areas, and transporter 

levels.  Within a given population, all of the cells share a set of kinetic parameters (k) in 

common.  B)  At the completion of the kinetic simulations, the total quantity of free and 

DNA-bound Hoechst dye species are added up within within an individual cell.  The free 

and DNA-bound dyes are converted to Hoechst Red and Blue signals according to their 

spectral properties.  C).  Excitation and emission spectra for free and DNA-bound 

Hoechst species displayed along side Hoechst Red and Blue channels within our 

cytometer configuration and modeled in silico.  Also shown is the excitation laser 

wavelength (355 nm).  D)  Signals from the Hoechst Blue and Hoechst Red channels are 

products of emission from both free and DNA-bound Hoechst, though relative efficiency 

of emission in the two channels is discrepant.  
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Table B.3  Spectral Quantities for In silico Flow Cytometry Signal Transformation 

 Description Symbol Value 

D
N

A
-B

o
u
n
d
 

H
o
ec

h
st

 

Quantum Yield 𝑄𝑏 0.34 

Excitation Efficiency 𝐸𝑏 0.9902 

Hoechst Red Emission 𝑅𝑏 29.86 

Hoechst Blue Emission 𝐵𝑏 4650 

F
re

e 
H

o
ec

h
st

 

Quantum Yield 𝑄𝑓 0.038 

Excitation Efficiency 𝐸𝑏 0.6764 

Hoechst Red Emission 𝑅𝑓 464.2 

Hoechst Blue Emission 𝐵𝑓 1914 
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B.5.3  Preliminary Hoechst Staining Model Considerations 

 

Figure B.9  Preliminary Considerations in the Modeling of Hoecsht Staining 

A)  Simulated Hoesht staining for a population of single-cells were used to find a mean 

staining signal for 5 and 10 µM Hoechst concentrations.  The relative kinetics of the two 

conditions to the 5 µM condition were compared to similarly normalized experimental 

data.  Staining took place in the presence of FTC to inhibit any transporter mediated 

efflux.  B)  Simulation of Hoechst Red/Blue Signals in stained permeabilized cells 

against data published by Smith, et al. (Figure 3a, [fuinsREF Smith paper])  Membrane 

transport was increased by a factor of 10
3
 to simulate increased rates of transport in the 

presence of permeabilized membranes.  C)  The simple models were compared over a 
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range of parameter sets, assigned vis LHS, and scored according to their relative fit in 

both time course staining (A) and ratiometric staining (B).  The relative error from the 

two objectives were combined into an overall 
2
 fit score.  D)  One model consisted of 

simple transport and DNA-binding kinetics.  The simple and non-specific binding model 

incorporated an element of non-specific binding and included additional terms for non-

specific association/dissociation as well as non-specific mass.  E)  The scores from best 

10% performing parameter sets are presented in violin plots where better scoring sets 

have lower 
2
 values. 
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B.5.4  Overview of Simulation Results by Model 

 

 

 

 

Figure B.10  Simulation Results by Model of Parameter Outcomes and %SP Fit. 

Each of the models was seeded with M=10,000 kinetic parameter sets.  A)  By model, the 

percent of sets having been fully simulated or aborted is shown.  Additionally, of the sets 

that finished, the percent of sets failing or passing qualitative selection is shown.  B)  

Histograms of the %SP fit (RMSE) of quality selection passing ensembles by model. 
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Figure B.11  Distributions of Parameters from SP-Ensembles vs Sampled 

Sets of kinetic parameters were assigned using LHS of Log10-uniform distributions 

(blue).  The parameter distributions from ensembles demonstrating SP responses (red) are 

a subset of the total sampled distribution.  Shown are histograms from the lower to upper 

range of the sampled distribution for each kinetic parameter included in LHS for each 

model. 
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B.5.5  Single-Cell SP Response Distributions 

 

Figure B.12  In silico Single-Cell Analyis of SP Responses of Full Response Type.   
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Figure B.13  In silico Single-Cell Analyis of SP Responses of Full Response Type.   
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B.5.6  Single-Cell SP Response Distribution Analysis 

 

Figure B.14  SP Response Distribution Landscape. 

Distributions of SP response (-∆Hproj) in individual cells within the populations of 

ensembles meeting SP selection criteria were characterize by standardized skewness and 

bimodality.  Simply put, skewness measures the degree of asymmetry of a distribution 

around the mean with a value of 0 corresponding to symmetry and positive values 

corresponding to distributions with larger ranges in the distribution above the mean.  

Likewise, negative skew values correspond to distributions with a larger range in the 

distribution below the mean than above it.  The bimodality coefficient is calculated from 

the standardized skewness and standardized kurtosis.  It has a range from 0 to 1, in which 

a value of 0 reflects a distribution with a single value while 1 corresponds to a 

distribution with exactly two values.  Distribitions with two fairly distinct modes score 

closer to 1 while distributions with a singular mode with a higher frequency score closer 

to 0.  The mappings of a wide variety of example distributions are depicted along with 

representations of the range single-cell SP responses in an example cell population.  

Lower case letters correspond to positioning on the Response Distribution Map. 
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Figure B.15  %SP Fit by Ensemble vs Skewness and Bimodality Coefficient. 

The %SP fit score (RMSE) of each ensemble demonstrating a SP response and having a 

RMSE > 0 is plotted against the standard skewness (A) and bimodality coefficient (B) of 

the single-cell SP response distribution.  Values are from Model 1 (blue), Model 2 (red), 

and Model 3 (green).  Larger data points with black outlines represent the averages from 

each of the models.   
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B.6  Imaging Cytometry Reveals Increased SP Size with tBHQ Treatment 

 

 

 

Figure B.16  Flow Sight ABCG2 Staining & SP Plots of Control and tBHQ Samples. 

A549 cells were treated with 50 µM tBHQ for 48 hours and analyzed using a FlowSight 

imaging cytometer.  A)  Samples were stained with an anti-ABCG2 antibody labeled with 

APC.  B)  Samples were prepared for a SP assay and Hoechst Red and Blue signals 

measured.  %SP using manual gating approach is displayed.  C)  Representative plots of 

Hoechst Red and Blue channels are shown.  Both ABCG2 and SP experiments were 

performed in triplicate with dead cells excluded from analysis by positive staining of 

cells in the presence of the viability stain SYTOX Green.  
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Figure B.17  Hoechst Staining Distributions of Control & tBHQ-Treated Samples. 

2D PDFs of cell populations in control and tBHQ-treated samples for +FTC (PDF+FTC) 

and -FTC (PDF-FTC) conditions, corresponding to flow cytometry data in Figure B.16.  A)  

Control +FTC condition.  B)  Control -FTC condition.  C) tBHQ-treated +FTC condition.  

D) tBHQ-treated -FTC condition.  Units of the Hoechst Scores are in terms of standard 

deviations from the mean.  Colormap density values are normalized to a common 

maximum frequency across the 4 conditions.  
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B.7  Hoechst N/C Ratio & DNA-Bound/Free Hoechst Analysis 

B.7.1  Theoretical Approach 

Fluorescence signals in biological assays are used as reporters of biological 

processes or species of interest.  The fluorescence emissions in such settings are often 

only interpretable in arbitrary units.  Relative deviations are meaningful in context but 

without some sort of reference, the signals are indeed arbitrary.  A defining feature of the 

SP assay is the use of a single fluorescent reporter with variable spectral properties that is 

measured in multiple detection channels.  In our implementation of in silico flow 

cytometry, we utilize these spectral properties to construct representations of Hoechst 

Red and Blue signals.  Here we will extend that process with a spatial component, 

considering nuclear and cytosolic Hoechst Red and Blue signals.  Flow cytometry is 

incapable of producing spatial data such as this.  Our use of imaging cytometry has 

provided us a unique means to interrogate Hoechst staining within the cell.  Imaging 

cytometry images of Hoechst stained cells from SP assays were segmented into nuclear 

and cytosolic spatial components and the Hoechst Red and Hoechst Blue signals 

extracted for each cellular compartment. 

Consider the Hoechst Red signal for a given cell.  The Hoechst Red signal can be 

decomposed as the sum of Hoechst Red signal from the nucleus (𝐻𝑅𝑛) and cytosol (𝐻𝑅𝑐) 

𝐻𝑅𝑡𝑜𝑡𝑎𝑙 = 𝐻𝑅𝑛 + 𝐻𝑅𝑐 

𝐻𝐵𝑡𝑜𝑡𝑎𝑙 = 𝐻𝐵𝑛 + 𝐻𝐵𝑐 
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The nuclear and cytosolic Hoechst Red and Blue signals are, analogous to the 

whole cell, derived from the quantities of DNA-bound (𝐻𝑏) and free (𝐻𝑓) Hoechst dye in 

the nucleus and cytosol. 

𝐻𝑅𝑛 = 𝑠11𝐻𝑏𝑛 + 𝑠12𝐻𝑓𝑛 

𝐻𝐵𝑛 = 𝑠21𝐻𝑏𝑛 + 𝑠22𝐻𝑓𝑛 

𝐻𝑅𝑐 = 𝑠11𝐻𝑏𝑐 + 𝑠12𝐻𝑓𝑐 

𝐻𝐵𝑐 = 𝑠21𝐻𝑏𝑐 + 𝑠22𝐻𝑓𝑐 

However, we assume that any DNA in the cytosol is negligible and set 𝐻𝑏𝑐 = 0 

𝐻𝑅𝑛 = 𝑠11𝐻𝑏𝑛 + 𝑠12𝐻𝑓𝑛 

𝐻𝐵𝑛 = 𝑠21𝐻𝑏𝑛 + 𝑠22𝐻𝑓𝑛 

𝐻𝑅𝑐 = 𝑠12𝐻𝑓𝑐 

𝐻𝐵𝑐 = 𝑠22𝐻𝑓𝑐 

Next we consider the ratios of Hoechst Blue and Red in the nucleus and cytosol.  

𝑅𝑛 =
𝐻𝐵𝑛

𝐻𝑅𝑛
 

𝑅𝑐 =
𝐻𝐵𝑐

𝐻𝑅𝑐
 

These ratios are, mostly, interpretable because Hoechst Red and Hoechst Blue 

signals are obtained on independent channels, which are therefore subject to independent 

scaling.  We assume linear scaling 𝛽𝑅 and 𝛽𝐵 for the Hoechst Red and Blue channels. 

𝐻𝑅 = 𝛽𝑅(𝑠11𝐻𝑏 + 𝑠12𝐻𝑓) 

𝐻𝐵 = 𝛽𝐵(𝑠21𝐻𝑏 + 𝑠22𝐻𝑓) 
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Then, for each of the nuclear and cytosolic components we have: 

𝐻𝑅𝑛 = 𝛽𝑅(𝑠11𝐻𝑏𝑛 + 𝑠12𝐻𝑓𝑛) 

𝐻𝐵𝑛 = 𝛽𝐵(𝑠21𝐻𝑏𝑛 + 𝑠22𝐻𝑓𝑛) 

𝐻𝑅𝑐 = 𝛽𝑅𝑠12𝐻𝑓𝑐 

𝐻𝐵𝑐 = 𝛽𝐵𝑠22𝐻𝑓𝑐 

When we consider the ratio of 𝑅𝑛 and 𝑅𝑐, we obtain: 

𝑅𝑁/𝐶 =
𝑅𝑛

𝑅𝑐
 

which simplifies to:  

𝑅𝑁/𝐶 =  
𝐻𝐵𝑛

𝐻𝑅𝑛

𝐻𝑅𝑐

𝐻𝐵𝑐
 =  

𝐻𝑅𝑐

𝐻𝑅𝑛

𝐻𝐵𝑛

𝐻𝐵𝑐
 

where the ratio of signals from within the same channel cancels out the scaling 

factors 𝛽𝑅 and 𝛽𝐵, in effect normalizing the ratio.  Thus, we arrive at:  

𝑅𝑁/𝐶 =  
𝑠12𝐻𝑓𝑐

𝑠11𝐻𝑏𝑛 + 𝑠12𝐻𝑓𝑛

𝑠21𝐻𝑏𝑛 + 𝑠22𝐻𝑓𝑛

𝑠22𝐻𝑓𝑐
 

where the 𝐻𝑓𝑐 term is eliminated, yielding  

𝑅𝑁/𝐶 =  
𝑠12

𝑠22

𝑠21𝐻𝑏𝑛 + 𝑠22𝐻𝑓𝑛

𝑠11𝐻𝑏𝑛 + 𝑠12𝐻𝑓𝑛
 =  

𝑠21

𝑠22
𝐻𝑏𝑛 + 𝐻𝑓𝑛

𝑠11

𝑠12
𝐻𝑏𝑛 + 𝐻𝑓𝑛

 

where, with rearrangement and factoring: 

(𝑅𝑁/𝐶

𝑠11

𝑠12
−

𝑠21

𝑠22
) 𝐻𝑏𝑛 = (1 − 𝑅𝑁/𝐶)𝐻𝑓𝑛 

finally arriving at: 

𝐻𝑏𝑛

𝐻𝑓𝑛
 =  

(1 − 𝑅𝑁/𝐶)

(𝑅𝑁/𝐶
𝑠11

𝑠12
−

𝑠21

𝑠22
)
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Therefore, in measuring nuclear and cytosolic Hoechst Red and Blue signals, the 

auto-normalized expression 𝑅𝑁/𝐶 can be calculated.  If the information expressed within 

the signal transformation matrix 𝑆 is known, then 𝑅𝑁/𝐶 and 𝑆 can be used to calculate the 

ratio of DNA-bound to free Hoechst in the nucleus. 

 

 

 

 

Table B.4  Quantities for In silico Imaging Cytometry Signal Transformation 

 Description Symbol Value 

D
N

A
-B

o
u
n
d
 

H
o
ec

h
st

 

Quantum Yield 𝑄𝑏 0.34 

Excitation Efficiency 𝐸𝑏 0.03463 

Hoechst Red Emission 𝑅𝑏 38.17 

Hoechst Blue Emission 𝐵𝑏 6005 

F
re

e 
H

o
ec

h
st

 

Quantum Yield 𝑄𝑓 0.038 

Excitation Efficiency 𝐸𝑏 0.01176 

Hoechst Red Emission 𝑅𝑓 571.1 

Hoechst Blue Emission 𝐵𝑓 4573 
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B.7.2  Free Hoecsht in Excess of DNA-Bound Hoechst in the Nucleus 

The combination of dual Hoechst signal sources and spatial staining information 

presents a unique opportunity to measure relative Hoechst concentrations in the nucleus.  

Because Hoechst Red and Blue signals arise from both free and bound Hoechst dye, 

neither Hoechst Red nor Blue signals can be directly ascribed to represent Hoechst 

concentration.  Using the basis for our in silico flow cytometry signals, we are able to 

calculate a Hoechst N/C Ratio, which is the ratio of Hoechst Blue to Hoechst Red signal 

in the nucleus divided by the ratio of Hoechst Blue to Hoechst Red signal in the cytosol.  

Using this ratio, the relative concentration of DNA-bound Hoechst compared to free 

Hoechst in the cytosol can be measured.  In the computational model of Hoechst staining, 

the distribution of DNA-bound to free nuclear Hoechst is quite large, but with a 

maximum frequency in the range of 0.01 to 0.1 (-2 to -1 in Log10 units), indicating a 

relative free Hoechst concentration in excess of DNA-bound Hoechst on the order of 10 

to 100-fold (Figure B.18-A).  

Imaging cytometry single-cell images were segmented into cytosolic and nuclear 

spatial components, for which Hoechst Red and Blue signals were measured.  The 

cytosolic and nuclear Hoechst signals were then used to calculate a Hoechst N/C ratio for 

each individual cell.  Hoechst N/C ratios were then used to calculate the relative ratio of 

DNA-bound to free Hoechst in the nucleus (Figure B.18-B).  The Hoechst N/C ratio was 

measured to be ~ (~2.8 in Log10 units), indicating that the relative Hoechst Blue to 

Hoechst Red signal in the nucleus is larger than that of the cytosol.  This corresponds to a 

ratio of DNA-bound to free Hoechst in the nucleus of ~0.06 (~ -1.25 in Log10 units).  

Therefore, the apparent relative ratio of DNA-bound to free nuclear Hoechst measured 
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via imaging cytometry fell within the most frequently range of ratios generated by SP-

generating ensembles in our Hoechst staining simulations.  

The Hoechst N/C ratio is significant in that it is dimensionless and eliminates the 

arbitrariness associated with fluorescent signals.  Occurs due to the formulation of the 

ratio in which the ratios of Hoechst Red and Hoechst Blue signals in the nucleus and 

cytosol are normalized to each other.  Based on this composition, the Hoechst N/C ratio 

cancels out any factors that might influence scaling signals and instead the ratio is itself 

meaningful.  The ratio, being greater than 1, indicates that the ratio of Hoechst Blue to 

Red in the nucleus is larger than that of the cytosol.  This supports the assumption in the 

construction of our computational model that spectral differences in DNA-bound and free 

Hoechst dyes contribute to the formation of Hoechst Red and Blue signals differentially.  

Our modeling approach is further validated by the observation of a ratio of DNA-bound 

to free Hoechst within the highest frequency range produced by the computational model.  

Notably, the model was not trained or optimized towards achieving such a ratio.  In 

contrast, the ensembles from the model that produced SP behavior most frequently 

possessed a ratio in the range that was observed experimentally.  The agreement between 

this experimentally observed ratio and our model, for which the model was not explicitly 

designed to measure, adds additional credence to our modeling approach. 
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Figure B.18  Nuclear/Cytosolic Signal Ratios Estimate Nuclear Dye Concentrations. 

A)  Histogram of Log10 ratio of DNA-Bound to free Hoechst in the nucleus from 

ensembles demonstrating a SP response.  B)  Imaging cytometry images were used to 

measure the Hoechst Red and Blue signals in the cytosol and nucleus.  The values were 

used to calculate a dimensionless Hoechst signal ratio.  The dimensionless ratio, the 

spectral properties of Hoechst, and the spectral properties of the imaging cytometer were 

used to estimate the relative concentrations of free and DNA-bound Hoechst in the 

nucleus.   



www.manaraa.com

 239 

REFERENCES 

 

 

Adachi, T., Nakagawa, H., Chung, I., Hagiya, Y., Hoshijima, K., Noguchi, N., Kuo, 

M.T., and Ishikawa, T. (2007). Nrf2-dependent and -independent induction of ABC 

transporters ABCC1, ABCC2, and ABCG2 in HepG2 cells under oxidative stress. J. Exp. 

Ther. Oncol. 6, 335–348. 

Aguilar, H.N., Zielnik, B., Tracey, C.N., and Mitchell, B.F. (2010). Quantification of 

rapid Myosin regulatory light chain phosphorylation using high-throughput in-cell 

Western assays: comparison to Western immunoblots. PLoS ONE 5, e9965. 

Ahmed, S., and Nawshad, A. (2007). Complexity in interpretation of embryonic 

epithelial-mesenchymal transition in response to transforming growth factor-beta 

signaling. Cells Tissues Organs (Print) 185, 131–145. 

Akunuru, S., James Zhai, Q., and Zheng, Y. (2012). Non-small cell lung cancer 

stem/progenitor cells are enriched in multiple distinct phenotypic subpopulations and 

exhibit plasticity. Cell Death Dis 3, e352. 

Akunuru, S., Palumbo, J., Zhai, Q.J., and Zheng, Y. (2011). Rac1 Targeting Suppresses 

Human Non-Small Cell Lung Adenocarcinoma Cancer Stem Cell Activity. PLoS ONE 6, 

e16951. 

Allen, R.C., and Loose, L.D. (1976). Phagocytic activation of a luminol-dependent 

chemiluminescence in rabbit alveolar and peritoneal macrophages. Biochem Biophys Res 

Commun 69, 245–252. 

Anastasiou, D., Poulogiannis, G., Asara, J.M., Boxer, M.B., Jiang, J.K., Shen, M., 

Bellinger, G., Sasaki, A.T., Locasale, J.W., Auld, D.S., et al. (2011). Inhibition of 

Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant 

Responses. Science 334, 1278–1283. 

Antunes, F., and Cadenas, E. (2000). Estimation of H2O2 gradients across 

biomembranes. FEBS Letters 475, 121–126. 

Appolloni, I., Barilari, M., Caviglia, S., Gambini, E., Reisoli, E., and Malatesta, P. 

(2014). A cadherin switch underlies malignancy in high-grade gliomas. Oncogene 1–12. 

Araki, K., Shimura, T., SUZUKI, H., Tsutsumi, S., Wada, W., Yajima, T., Kobayahi, T., 

Kubo, N., and Kuwano, H. (2011). E/N-cadherin switch mediates cancer progression via 

TGF. British Journal of Cancer 105, 1885–1893. 

Aref, A.R., Huang, R.Y.-J., Yu, W., Chua, K.-N., Sun, W., Tu, T.-Y., Bai, J., Sim, W.-J., 

Zervantonakis, I.K., Thiery, J.P., et al. (2013). Screening therapeutic EMT blocking 



www.manaraa.com

 240 

agents in a three-dimensional microenvironment. Integr. Biol. 5, 381–389. 

Arnhold, J., Mueller, S., Arnold, K., and Grimm, E. (1991). Chemiluminescence 

intensities and spectra of luminol oxidation by sodium hypochlorite in the presence of 

hydrogen peroxide. J. Biolumin. Chemilumin. 6, 189–192. 

Arnhold, J., Mueller, S., Arnold, K., and Sonntag, K. (1993). Mechanisms of inhibition of 

chemiluminescence in the oxidation of luminol by sodium hypochlorite. J. Biolumin. 

Chemilumin. 8, 307–313. 

Arsalane, K., Dubois, C.M., Muanza, T., Bégin, R., Boudreau, F., Asselin, C., and 

Cantin, A.M. (1997). Transforming growth factor-beta1 is a potent inhibitor of 

glutathione synthesis in the lung epithelial cell line A549: transcriptional effect on the 

GSH rate-limiting enzyme gamma-glutamylcysteine synthetase. Am J Respir Cell Mol 

Biol 17, 599–607. 

Attisano, L., and Wrana, J.L. (2002). Signal transduction by the TGF-beta superfamily. 

Science 296, 1646–1647. 

Auton, A. (2009). 25536 - red blue colormap (Matlab File Exchange). 

Bakin, A.V., Stourman, N.V., Sekhar, K.R., Rinehart, C., Yan, X., Meredith, M.J., 

Arteaga, C.L., and Freeman, M.L. (2005). Smad3-ATF3 signaling mediates TGF-beta 

suppression of genes encoding Phase II detoxifying proteins. Free Radic Biol Med 38, 

375–387. 

Barrowes, B. (2005). 7772 - suplabel (Matlab File Exchange). 

Bechyne, I., Szpak, K., Madeja, Z., and Czyż, J. (2011). Functional heterogeneity of non-

small lung adenocarcinoma cell sub-populations. Cell Biol Int 36, 99–103. 

Bierie, B., and Moses, H.L. (2006). Tumour microenvironment: TGFβ: the molecular 

Jekyll and Hyde of cancer. Nat Rev Cancer 6, 506–520. 

Bierie, B., and Moses, H.L. (2010). Transforming growth factor beta (TGF-beta) and 

inflammation in cancer. Cytokine Growth Factor Rev 21, 49–59. 

Bindoli, A., and Rigobello, M.P. (2013). Principles in Redox Signaling: From Chemistry 

to Functional Significance. Antioxid Redox Signal 18, 1557–1593. 

Black, D., Bird, M.A., Samson, C.M., Lyman, S., Lange, P.A., Schrum, L.W., Qian, T., 

Lemasters, J.J., Brenner, D.A., Rippe, R.A., et al. (2004). Primary cirrhotic hepatocytes 

resist TGF$beta;-induced apoptosis through a ROS-dependent mechanism. Journal of 

Hepatology 40, 942–951. 

Blick, T., Hugo, H., Widodo, E., Waltham, M., Pinto, C., Mani, S.A., Weinberg, R.A., 

Neve, R.M., Lenburg, M.E., and Thompson, E.W. (2010). Epithelial Mesenchymal 

Transition Traits in Human Breast Cancer Cell Lines Parallel the CD44hi/CD24lo/- Stem 



www.manaraa.com

 241 

Cell Phenotype in Human Breast Cancer. J Mammary Gland Biol Neoplasia 15, 235–252. 

Boesch, M., Zeimet, A.G., Reimer, D., Schmidt, S., Gastl, G., Parson, W., Spoeck, F., 

Hatina, J., Wolf, D., and Sopper, S. (2014). The side population of ovarian cancer cells 

defines a heterogeneous compartment exhibiting stem cell characteristics. Oncotarget 5, 

7027–7039. 

Borthwick, L.A., Gardner, A., De Soyza, A., Mann, D.A., and Fisher, A.J. (2012). 

Transforming Growth Factor-β1 (TGF-β1) Driven Epithelial to Mesenchymal Transition 

(EMT) is Accentuated by Tumour Necrosis Factor α (TNFα) via Crosstalk Between the 

SMAD and NF-κB Pathways. Cancer Microenviron 5, 45–57. 

Boudreau, H.E., Casterline, B.W., Rada, B., Korzeniowska, A., and Leto, T.L. (2012). 

Nox4 involvement in TGF-beta and SMAD3-driven induction of the epithelial-to-

mesenchymal transition and migration of breast epithelial cells. Free Radic Biol Med 53, 

1489–1499. 

Boudreau, R.T.M., Conrad, D.M., and Hoskin, D.W. (2007). Differential involvement of 

reactive oxygen species in apoptosis caused by the inhibition of protein phosphatase 2A 

in Jurkat and CCRF-CEM human T-leukemia cells. Exp Mol Pathol 83, 347–356. 

Brechbuhl, H.M., Gould, N., Kachadourian, R., Riekhof, W.R., Voelker, D.R., and Day, 

B.J. (2010). Glutathione Transport Is a Unique Function of the ATP-binding Cassette 

Protein ABCG2. J Biol Chem 285, 16582–16587. 

Brechbuhl, H.M., Min, E., Kariya, C., Frederick, B., Raben, D., and Day, B.J. (2009). 

Free Radical Biology & Medicine. Free Radic Biol Med 47, 722–730. 

Brestel, E.P. (1985). Co-oxidation of luminol by hypochlorite and hydrogen peroxide 

implications for neutrophil chemiluminescence. Biochem Biophys Res Commun 126, 

482–488. 

Broadley, K.W.R., Hunn, M.K., Farrand, K.J., Price, K.M., Grasso, C., Miller, R.J., 

Hermans, I.F., and McConnell, M.J. (2011). Side Population is Not Necessary or 

Sufficient for a Cancer Stem Cell Phenotype in Glioblastoma Multiforme. Stem Cells 29, 

452–461. 

Brown, A.C., Fiore, V.F., Sulchek, T.A., and Barker, T.H. (2012). Physical and chemical 

microenvironmental cues orthogonally control the degree and duration of fibrosis-

associated epithelial-to-mesenchymal transitions. J. Pathol. 229, 25–35. 

Brown, K.A., Aakre, M.E., Gorska, A.E., Price, J.O., Eltom, S.E., Pietenpol, J.A., and 

Moses, H.L. (2004). Induction by transforming growth factor-beta1 of epithelial to 

mesenchymal transition is a rare event in vitro. Breast Cancer Res. 6, R215–R231. 

Burkert, J., Otto, W.R., and Wright, N.A. (2008). Side populations of gastrointestinal 

cancers are not enriched in stem cells. J. Pathol. 214, 564–573. 



www.manaraa.com

 242 

Cannito, S., Novo, E., Di Bonzo, L.V., Busletta, C., Colombatto, S., and Parola, M. 

(2010). Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation 

to implications in human health and disease. Antioxid Redox Signal 12, 1383–1430. 

Chai, J.Y., Modak, C., Mouazzen, W., Narvaez, R., and Pham, J. (2010). Epithelial or 

mesenchymal: Where to draw the line? Biosci Trends 4, 130–142. 

Chai, J., Wu, J.-W., Yan, N., Massague, J., Pavletich, N.P., and Shi, Y. (2003). Features 

of a Smad3 MH1-DNA complex. Roles of water and zinc in DNA binding. J Biol Chem 

278, 20327–20331. 

Chang, J., Jiang, Z., Zhang, H., Zhu, H., Zhou, S.-F., and Yu, X. (2011). NADPH 

oxidase-dependent formation of reactive oxygen species contributes to angiotensin II-

induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells. Int. J. Mol. 

Med. 28, 405–412. 

Chen, X.-F., Zhang, H.-J., Wang, H.-B., Zhu, J., Zhou, W.-Y., Zhang, H., Zhao, M.-C., 

Su, J.-M., Gao, W., Zhang, L., et al. (2011). Transforming growth factor-β1 induces 

epithelial-to-mesenchymal transition in human lung cancer cells via PI3K/Akt and 

MEK/Erk1/2 signaling pathways. Mol. Biol. Rep. 39, 3549–3556. 

Chen, X., Zhang, J., Zhang, Z., Li, H., Cheng, W., and Liu, J. (2013). Cancer stem cells, 

epithelial-mesenchymal transition, and drug resistance in high-grade ovarian serous 

carcinoma. Hum Pathol 44, 2373–2384. 

Clark, R., Kerr, I.D., and Callaghan, R. (2006). Multiple drugbinding sites on the R482G 

isoform of the ABCG2 transporter. British Journal of Pharmacology 149, 506–515. 

Cosa, G., Focsaneanu, K.S., McLean, J.R., McNamee, J.P., and Scaiano, J.C. (2001). 

Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded 

DNA in aqueous buffered solution. Photochem Photobiol 73, 585–599. 

Cucoranu, I., Clempus, R., Dikalova, A., Phelan, P.J., Ariyan, S., Dikalov, S., and 

Sorescu, D. (2005). NAD(P)H oxidase 4 mediates transforming growth factor-beta1-

induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97, 900–907. 

Daopin, S., Piez, K.A., Ogawa, Y., and Davies, D.R. (1992). Crystal structure of 

transforming growth factor-beta 2: an unusual fold for the superfamily. Science Magazine 

257, 369–373. 

Darzynkiewicz, Z. (2001). Critical Aspects in Analysis of Cellular DNA Content 

(Hoboken, NJ, USA: John Wiley & Sons, Inc.). 

Dennler, S., Itoh, S., Vivien, D., Dijke, ten, P., Huet, S., and Gauthier, J.M. (1998). 

Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the 

promoter of human plasminogen activator inhibitor-type 1 gene. The EMBO Journal 17, 

3091–3100. 



www.manaraa.com

 243 

Diamond, M.E., Sun, L., Ottaviano, A.J., Joseph, M.J., and Munshi, H.G. (2008). 

Differential growth factor regulation of N-cadherin expression and motility in normal and 

malignant oral epithelium. J Cell Sci 121, 2197–2207. 

Do, T.V., Kubba, L.A., Du, H., Sturgis, C.D., and Woodruff, T.K. (2008). Transforming 

Growth Factor- 1, Transforming Growth Factor- 2, and Transforming Growth Factor- 3 

Enhance Ovarian Cancer Metastatic Potential by Inducing a Smad3-Dependent 

Epithelial-to-Mesenchymal Transition. Molecular Cancer Research 6, 695–705. 

Dzwonek, J., Preobrazhenska, O., Cazzola, S., Conidi, A., Schellens, A., van Dinther, M., 

Stubbs, A., Klippel, A., Huylebroeck, D., Dijke, ten, P., et al. (2009). Smad3 is a key 

nonredundant mediator of transforming growth factor beta signaling in Nme mouse 

mammary epithelial cells. Molecular Cancer Research 7, 1342–1353. 

Ehata, S., Johansson, E., Katayama, R., Koike, S., Watanabe, A., Hoshino, Y., Katsuno, 

Y., Komuro, A., Koinuma, D., Kano, M.R., et al. (2011). Transforming growth factor-β 

decreases the cancer-initiating cell population within diffuse-type gastric carcinoma cells. 

Oncogene 30, 1693–1705. 

Eilers, P.H.C., and Goeman, J.J. (2004). Enhancing scatterplots with smoothed densities. 

Bioinformatics 20, 623–628. 

Eriksson, S.E., Prast-Nielsen, S., Flaberg, E., Szekely, L., and Arnér, E.S.J. (2009). High 

levels of thioredoxin reductase 1 modulate drug-specific cytotoxic efficacy. Free Radic 

Biol Med 47, 1661–1671. 

Fan, S.W., George, R.A., Haworth, N.L., Feng, L.L., Liu, J.Y., and Wouters, M.A. 

(2009). Conformational changes in redox pairs of protein structures. Protein Science 18, 

1745–1765. 

Fatma, N., Kubo, E., Takamura, Y., Ishihara, K., Garcia, C., Beebe, D.C., and Singh, 

D.P. (2009). Loss of NF-kappaB control and repression of Prdx6 gene transcription by 

reactive oxygen species-driven SMAD3-mediated transforming growth factor beta 

signaling. J Biol Chem 284, 22758–22772. 

Felton, V.M., Borok, Z., and Willis, B.C. (2009). N-acetylcysteine inhibits alveolar 

epithelial-mesenchymal transition. AJP: Lung Cellular and Molecular Physiology 297, 

L805–L812. 

Fong, Y.-C., Hsu, S.-F., Wu, C.-L., Li, T.-M., Kao, S.-T., Tsai, F.-J., Chen, W.-C., Liu, 

S.-C., Wu, C.-M., and Tang, C.-H. (2009). Transforming growth factor-β1 increases cell 

migration and β1 integrin up-regulation in human lung cancer cells. Lung Cancer 64, 13–

21. 

Forman, H.J., Davies, K.J.A., and Ursini, F. (2014). How do nutritional antioxidants 

really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. 

Free Radic Biol Med 66, 24–35. 



www.manaraa.com

 244 

Forman, H.J., Maiorino, M., and Ursini, F. (2010). Signaling functions of reactive oxygen 

species. Biochemistry 49, 835–842. 

Galimberti, S., Nagy, B., Benedetti, E., Pacini, S., Brizzi, S., Caracciolo, F., Papineschi, 

F., Ciabatti, E., Guerrini, F., Fazzi, R., et al. (2007). Evaluation of the MDR1, ABCG2, 

Topoisomerases IIαand GSTπgene expression in patients affected by aggressive mantle 

cell lymphoma treated by the R-Hyper-CVAD regimen. Leuk Lymphoma 48, 1502–

1509. 

Giannoni, E., Bianchini, F., Calorini, L., and Chiarugi, P. (2011). Cancer Associated 

Fibroblasts Exploit Reactive Oxygen Species Through a Proinflammatory Signature 

Leading to Epithelial Mesenchymal Transition and Stemness. Antioxid Redox Signal 14, 

2361–2371. 

Giard, D.J., Aaronson, S.A., Todaro, G.J., Arnstein, P., Kersey, J.H., Dosik, H., and 

Parks, W.P. (1973). In vitro cultivation of human tumors: establishment of cell lines 

derived from a series of solid tumors. J. Natl. Cancer Inst. 51, 1417–1423. 

Goldstraw, P., Ball, D., Jett, J.R., Le Chevalier, T., Lim, E., Nicholson, A.G., and 

Shepherd, F.A. (2011). Non-small-cell lung cancer. Lancet 378, 1727–1740. 

Golebiewska, A., Brons, N.H.C., Bjerkvig, R., and Niclou, S.P. (2011). Critical appraisal 

of the side population assay in stem cell and cancer stem cell research. Cell Stem Cell 8, 

136–147. 

Goodell, M.A., Brose, K., Paradis, G., Conner, A.S., and Mulligan, R.C. (1996). Isolation 

and functional properties of murine hematopoietic stem cells that are replicating in vivo. J 

Exp Med 183, 1797–1806. 

Gorowiec, M.R., Borthwick, L.A., Parker, S.M., Kirby, J.A., Saretzki, G.C., and Fisher, 

A.J. (2012). Free radical generation induces epithelial-to-mesenchymal transition in lung 

epithelium via a TGF-β1-dependent mechanism. Free Radic Biol Med 52, 1024–1032. 

Gravdal, K., Halvorsen, O.J., Haukaas, S.A., and Akslen, L.A. (2007). A switch from E-

cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is 

of strong and independent importance for the progress of prostate cancer. Clin Cancer 

Res 13, 7003–7011. 

Grek, C.L., Zhang, J., Manevich, Y., Townsend, D.M., and Tew, K.D. (2013). Causes 

and Consequences of Cysteine S-Glutathionylation. Journal of Biological Chemistry 288, 

26497–26504. 

Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57–70. 

Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 

144, 646–674. 

Hawinkels, L.J.A.C., Paauwe, M., Verspaget, H.W., Wiercinska, E., van der Zon, J.M., 



www.manaraa.com

 245 

van der Ploeg, K., Koelink, P.J., Lindeman, J.H.N., Mesker, W., Dijke, ten, P., et al. 

(2012). Interaction with colon cancer cells hyperactivates TGF-b signaling in cancer-

associated fibroblasts. Oncogene 33, 97–107. 

Hazan, R.B., Qiao, R., Keren, R., Badano, I., and Suyama, K. (2004). Cadherin switch in 

tumor progression. Ann N Y Acad Sci 1014, 155–163. 

Hecker, L., Vittal, R., Jones, T., Jagirdar, R., Luckhardt, T.R., Horowitz, J.C., Pennathur, 

S., Martinez, F.J., and Thannickal, V.J. (2009). NADPH oxidase-4 mediates 

myofibroblast activation and fibrogenic responses to lung injury. Nat Med 15, 1077–

1081. 

Hill, C.S. (2009). Nucleocytoplasmic shuttling of Smad proteins. Cell Res 19, 36–46. 

Hirschmann-Jax, C., Foster, A.E., Wulf, G.G., Nuchtern, J.G., Jax, T.W., Gobel, U., 

Goodell, M.A., and Brenner, M.K. (2004). A distinct “side population” of cells with high 

drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101, 14228–14233. 

Ho, M.M., Ng, A.V., Lam, S., and Hung, J.Y. (2007). Side Population in Human Lung 

Cancer Cell Lines and Tumors Is Enriched with Stem-like Cancer Cells. Cancer Res 67, 

4827–4833. 

Hong, Y.B., Kang, H.J., Kwon, S.Y., Kim, H.J., Kwon, K.Y., Cho, C.H., Lee, J.-M., 

Kallakury, B.V.S., and Bae, I. (2010). Nuclear factor (erythroid-derived 2)-like 2 

regulates drug resistance in pancreatic cancer cells. Pancreas 39, 463–472. 

Horiguchi, K., Shirakihara, T., Nakano, A., Imamura, T., Miyazono, K., and Saitoh, M. 

(2008). Role of Ras Signaling in the Induction of Snail by Transforming Growth Factor. J 

Biol Chem 284, 245–253. 

Hua, X., Miller, Z.A., Wu, G., Shi, Y., and Lodish, H.F. (1999). Specificity in 

transforming growth factor beta-induced transcription of the plasminogen activator 

inhibitor-1 gene: interactions of promoter DNA, transcription factor muE3, and Smad 

proteins. Proc Natl Acad Sci USA 96, 13130–13135. 

Huang, R.Y.-J., Wong, M.K., Tan, T.Z., Kuay, K.T., Ng, A.H.C., Chung, V.Y., Chu, Y.-

S., Matsumura, N., Lai, H.-C., Lee, Y.F., et al. (2013). An EMT spectrum defines an 

anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to 

e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). 4, e915–13. 

Hugo, H., Ackland, M.L., Blick, T., Lawrence, M.G., Clements, J.A., Williams, E.D., and 

Thompson, E.W. (2007). Epithelial—mesenchymal and mesenchymal—epithelial 

transitions in carcinoma progression. J Cell Physiol 213, 374–383. 

Hurd, T.R., and Murphy, M.P. (2009). Biological Systems Relevant for Redox Signaling 

and Control. In Redox Signaling and Regulation in Biology and Medicine, C. Jacob, and 

P.G. Winyard, eds. (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA), pp. 

13–43. 



www.manaraa.com

 246 

Ibrahim, S.F., Diercks, A.H., Petersen, T.W., and van den Engh, G. (2007). Kinetic 

analyses as a critical parameter in defining the side population (SP) phenotype. Exp Cell 

Res 313, 1921–1926. 

Ikushima, H., and Miyazono, K. (2010). TGFbeta signalling: a complex web in cancer 

progression. Nat Rev Cancer 10, 415–424. 

Inman, G.J., Nicolás, F.J., and Hill, C.S. (2002). Nucleocytoplasmic shuttling of Smads 

2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 10, 283–294. 

Ivanova, L., Butt, M.J., and Matsell, D.G. (2008). Mesenchymal transition in kidney 

collecting duct epithelial cells. AJP: Renal Physiology 294, F1238–F1248. 

Janda, E., Lehmann, K., Killisch, I., Jechlinger, M., Herzig, M., Downward, J., Beug, H., 

and Grünert, S. (2002). Ras and TGF[beta] cooperatively regulate epithelial cell plasticity 

and metastasis: dissection of Ras signaling pathways. The Journal of Cell Biology 156, 

299–313. 

Janes, K.A., and Yaffe, M.B. (2006). Data-driven modelling of signal-transduction 

networks. Nat Rev Mol Cell Biol 7, 820–828. 

Janssen-Heininger, Y.M.W., Nolin, J.D., Hoffman, S.M., van der Velden, J.L., Tully, 

J.E., Lahue, K.G., Abdalla, S.T., Chapman, D.G., Reynaert, N.L., van der Vliet, A., et al. 

(2013). Emerging mechanisms of glutathione-dependent chemistry in biology and 

disease. J Cell Biochem 114, 1962–1968. 

Jardine, H., MacNee, W., Donaldson, K., and Rahman, I. (2002). Molecular mechanism 

of transforming growth factor (TGF)-beta1-induced glutathione depletion in alveolar 

epithelial cells. Involvement of AP-1/ARE and Fra-1. J Biol Chem 277, 21158–21166. 

Jäger, T., Becker, M., Eisenhardt, A., Tilki, D., Tötsch, M., Schmid, K.W., Romics, I., 

Rübben, H., Ergün, S., and Szarvas, T. (2010). The prognostic value of cadherin switch 

in bladder cancer. Oncol. Rep. 23, 1125–1132. 

Jeremy (2011). 32101-progress monitor (Matlab File Exchange). 

Ji, L., Li, H., Gao, P., Shang, G., Zhang, D.D., Zhang, N., and Jiang, T. (2013). Nrf2 

Pathway Regulates Multidrug-Resistance-Associated Protein 1 in Small Cell Lung 

Cancer. PLoS ONE 8, e63404. 

Jiang, Y., Zhao, X., Xiao, Q., Liu, Q., Ding, K., Yu, F., Zhang, R., Zhu, T., and Ge, G. 

(2014). Snail and Slug mediate tamoxifen resistance in breast cancer cells through 

activation of EGFR-ERK independent of epithelial-mesenchymal transition. J Mol Cell 

Biol 6, 352–354. 

Jinnin, M. (2005). Characterization of SIS3, a Novel Specific Inhibitor of Smad3, and Its 

Effect on Transforming Growth Factor-beta1-Induced Extracellular Matrix Expression. 

Mol Pharmacol 69, 597–607. 



www.manaraa.com

 247 

Jonas (2009). 23661 - violin plots for plotting multiple distributions (Matlab File 

Exchange). 

Junk, D.J., Cipriano, R., Bryson, B.L., Gilmore, H.L., and Jackson, M.W. (2013). Tumor 

Microenvironmental Signaling Elicits Epithelial-Mesenchymal Plasticity through 

Cooperation with Transforming Genetic Events. Neoplasia 15, 1100–1109. 

Junn, E., Lee, K.N., Ju, H.R., Han, S.H., Im, J.Y., Kang, H.S., Lee, T.H., Bae, Y.S., Ha, 

K.S., Lee, Z.W., et al. (2000). Requirement of hydrogen peroxide generation in TGF-beta 

1 signal transduction in human lung fibroblast cells: involvement of hydrogen peroxide 

and Ca2+ in TGF-beta 1-induced IL-6 expression. J Immunol 165, 2190–2197. 

Kabashima, A., Higuchi, H., Takaishi, H., Matsuzaki, Y., Suzuki, S., Izumiya, M., Iizuka, 

H., Sakai, G., Hozawa, S., Azuma, T., et al. (2009). Side population of pancreatic cancer 

cells predominates in TGF-beta-mediated epithelial to mesenchymal transition and 

invasion. Int J Cancer 124, 2771–2779. 

Kalluri, R., and Weinberg, R.A. (2009). The basics of epithelial-mesenchymal transition. 

J Clin Invest 119, 1420–1428. 

Kalyanaraman, B., Darley-Usmar, V., Davies, K.J.A., Dennery, P.A., Forman, H.J., 

Grisham, M.B., Mann, G.E., Moore, K., Roberts, L.J., and Ischiropoulos, H. (2012). 

Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and 

limitations. Free Radic Biol Med 52, 1–6. 

Kang, Y., He, W., Tulley, S., Gupta, G.P., Serganova, I., Chen, C.-R., Manova-Todorova, 

K., Blasberg, R., Gerald, W.L., and Massague, J. (2005). Breast cancer bone metastasis 

mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA 102, 13909–

13914. 

Karlsson, M., Kurz, T., Brunk, U.T., Nilsson, S.E., and Frennesson, C.I. (2010). What 

does the commonly used DCF test for oxidative stress really show? Biochem J 428, 183–

190. 

Kasai, H., Allen, J.T., Mason, R.M., Kamimura, T., and Zhang, Z. (2005). TGF-beta1 

induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 6, 

56. 

Katsuno, Y., Lamouille, S., and Derynck, R. (2013). TGF-β signaling and epithelial-

mesenchymal transition in cancer progression. Curr Opin Oncol 25, 76–84. 

Kemp, M., Go, Y.-M., and Jones, D.P. (2008). Nonequilibrium thermodynamics of 

thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol 

Med 44, 921–937. 

Keshamouni, V.G., and Schiemann, W.P. (2009). Epithelial-mesenchymal transition in 

tumor metastasis: a method to the madness. Future Oncol 5, 1109–1111. 



www.manaraa.com

 248 

Keshamouni, V.G., Jagtap, P., Michailidis, G., Strahler, J.R., Kuick, R., Reka, A.K., 

Papoulias, P., Krishnapuram, R., Srirangam, A., Standiford, T.J., et al. (2009). Temporal 

quantitative proteomics by iTRAQ 2D-LC-MS/MS and corresponding mRNA expression 

analysis identify post-transcriptional modulation of actin-cytoskeleton regulators during 

TGF-beta-Induced epithelial-mesenchymal transition. J Proteome Res 8, 35–47. 

Kim, J.H., Jang, Y.S., Eom, K.-S., Hwang, Y.I., Kang, H.R., Jang, S.H., Kim, C.H., Park, 

Y.B., Lee, M.G., Hyun, I.G., et al. (2007). Transforming growth factor beta1 induces 

epithelial-to-mesenchymal transition of A549 cells. J Korean Med Sci 22, 898–904. 

Kim, K.K., Kugler, M.C., Wolters, P.J., Robillard, L., Galvez, M.G., Brumwell, A.N., 

Sheppard, D., and Chapman, H.A. (2006). Alveolar epithelial cell mesenchymal 

transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular 

matrix. Proc Natl Acad Sci USA 103, 13180–13185. 

Kim, M., Turnquist, H., Jackson, J., Sgagias, M., Yan, Y., Gong, M., Dean, M., Sharp, 

J.G., and Cowan, K. (2002). The multidrug resistance transporter ABCG2 (breast cancer 

resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem 

cells. Clin Cancer Res 8, 22–28. 

Kocić, J., Bugarski, D., and Santibanez, J.F. (2011). SMAD3 is essential for transforming 

growth factor-Î²1-induced urokinase type plasminogen activator expression and migration 

in transformed keratinocytes. European Journal of Cancer 48, 1550–1557. 

Kolosionek, E., Savai, R., Ghofrani, H.A., Weissmann, N., Guenther, A., Grimminger, F., 

Seeger, W., Banat, G.A., Schermuly, R.T., and Pullamsetti, S.S. (2009). Expression and 

activity of phosphodiesterase isoforms during epithelial mesenchymal transition: the role 

of phosphodiesterase 4. Mol Biol Cell 20, 4751–4765. 

Kopp, J., Seyhan, H., Muller, B., Lanczak, J., Pausch, E., Gressner, A.M., Dooley, S., and 

Horch, R.E. (2006). N-acetyl-L-cysteine abrogates fibrogenic properties of fibroblasts 

isolated from Dupuytren's disease by blunting TGF-beta signalling. J Cell Mol Med 10, 

157–165. 

Kubota, M., Shimmura, S., Miyashita, H., Kawashima, M., Kawakita, T., and Tsubota, K. 

(2010). The anti-oxidative role of ABCG2 in corneal epithelial cells. Invest Ophthalmol 

Vis Sci 51, 5617–5622. 

Kumpulainen, P. (2010). 27991 - tight subplot (Matlab File Exchange). 

Kweon, M.-H., Adhami, V.M., Lee, J.-S., and Mukhtar, H. (2006). Constitutive 

overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to 

resistance to apoptosis induced by epigallocatechin 3-gallate. J Biol Chem 281, 33761–

33772. 

Labelle, M., Begum, S., and Hynes, R.O. (2011). Direct Signaling between Platelets and 

Cancer Cells Induces an Epithelial-Mesenchymal-Like Transition and Promotes 

Metastasis. Cancer Cell 20, 576–590. 



www.manaraa.com

 249 

Lee, E.K., Jeon, W.-K., Chae, M.Y., Hong, H.-Y., Lee, Y.S., Kim, J.H., Kwon, J.Y., 

Kim, B.-C., and Park, S.H. (2010). Decreased expression of glutaredoxin 1 is required for 

transforming growth factor-beta1-mediated epithelial-mesenchymal transition of EpRas 

mammary epithelial cells. Biochem Biophys Res Commun 391, 1021–1027. 

Lee, S.H., Kim, H., Hwang, J.-H., Lee, H.S., Cho, J.Y., Yoon, Y.-S., and Han, H.-S. 

(2012). Breast cancer resistance protein expression is associated with early recurrence 

and decreased survival in resectable pancreatic cancer patients. Pathology International 

62, 167–175. 

Leier, I., Jedlitschky, G., Buchholz, U., Center, M., Cole, S.P., Deeley, R.G., and 

Keppler, D. (1996). ATP-dependent glutathione disulphide transport mediated by the 

MRP gene-encoded conjugate export pump. Biochem J 314 ( Pt 2), 433–437. 

Leto, T.L., Morand, S., Hurt, D., and Ueyama, T. (2009). Targeting and regulation of 

reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox 

Signal 11, 2607–2619. 

Li, W.Q., Qureshi, H.Y., Liacini, A., Dehnade, F., and Zafarullah, M. (2004). 

Transforming growth factor Beta1 induction of tissue inhibitor of metalloproteinases 3 in 

articular chondrocytes is mediated by reactive oxygen species. Free Radic Biol Med 37, 

196–207. 

Li, Y., and Laterra, J. (2012). Cancer Stem Cells: Distinct Entities or Dynamically 

Regulated Phenotypes? Cancer Res 72, 576–580. 

Lichtenauer, U.D., Shapiro, I., Geiger, K., Quinkler, M., Fassnacht, M., Nitschke, R., 

Rückauer, K.-D., and Beuschlein, F. (2008). Side Population Does Not Define Stem Cell-

Like Cancer Cells in the Adrenocortical Carcinoma Cell Line NCI h295R. Endocrinology 

149, 1314–1322. 

Lichtenberger, F.J., Montague, C., Hunter, M., Frambach, G., and Marsh, C.B. (2006). 

NAC and DTT promote TGF-beta1 monomer formation: demonstration of competitive 

binding. J Inflamm (Lond) 3, 7. 

Lillig, C.H., Berndt, C., and Holmgren, A. (2008). Glutaredoxin systems. Biochim 

Biophys Acta 1780, 1304–1317. 

Lin, X., Duan, X., Liang, Y.-Y., Su, Y., Wrighton, K.H., Long, J., Hu, M., Davis, C.M., 

Wang, J., Brunicardi, F.C., et al. (2006). PPM1A functions as a Smad phosphatase to 

terminate TGFbeta signaling. Cell 125, 915–928. 

Liu, F., Pouponnot, C., and Massague, J. (1997). Dual role of the Smad4/DPC4 tumor 

suppressor in TGFbeta -inducible transcriptional complexes. Genes Dev 11, 3157–3167. 

Liu, P.-P., Liao, J., Tang, Z.-J., Wu, W.-J., Yang, J., Zeng, Z.-L., Hu, Y., Wang, P., Ju, 

H.-Q., Xu, R.-H., et al. (2014). Metabolic regulation of cancer cell side population by 

glucose through activation of the Akt pathway. Cell Death Differ 21, 124–135. 



www.manaraa.com

 250 

Loontiens, F.G., Regenfuss, P., Zechel, A., Dumortier, L., and Clegg, R.M. (1990). 

Binding characteristics of Hoechst 33258 with calf thymus DNA, poly[d(A-T)], and 

d(CCGGAATTCCGG): multiple stoichiometries and determination of tight binding with 

a wide spectrum of site affinities. Biochemistry 29, 9029–9039. 

Lorendeau, D., Dury, L., Genoux-Bastide, E., Lecerf-Schmidt, F., Simões-Pires, C., 

Carrupt, P.-A., Terreux, R., Magnard, S., Di Pietro, A., Boumendjel, A., et al. (2014). 

Collateral sensitivity of resistant MRP1-overexpressing cells to flavonoids and 

derivatives through GSH efflux. Biochemical Pharmacology 90, 235–245. 

Lu, J., and Holmgren, A. (2013). Free Radical Biology and Medicine. Free Radic Biol 

Med 1–13. 

Lu, S.C. (2013). Glutathione synthesis. Biochim Biophys Acta 1830, 3143–3153. 

Lyakhovich, V.V., Vavilin, V.A., Zenkov, N.K., and Menshchikova, E.B. (2006). Active 

defense under oxidative stress. The antioxidant responsive element. Biochemistry Mosc 

71, 962–974. 

Maeda, M., Johnson, K.R., and Wheelock, M.J. (2005). Cadherin switching: essential for 

behavioral but not morphological changes during an epithelium-to-mesenchyme 

transition. J Cell Sci 118, 873–887. 

Maher, T.J., Ren, Y., Li, Q., Braunlin, E., Garry, M.G., Sorrentino, B.P., and Martin, 

C.M. (2014). ATP-binding cassette transporter Abcg2 lineage contributes to the cardiac 

vasculature after oxidative stress. AJP: Heart and Circulatory Physiology 306, H1610–

H1618. 

Mallini, P., Lennard, T., Kirby, J., and Meeson, A. (2013). Cancer Treatment Reviews. 

Cancer Treatment Reviews 1–8. 

Mani, S.A., Guo, W., Liao, M.-J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., 

Reinhard, F., Zhang, C.C., Shipitsin, M., et al. (2008). The Epithelial-Mesenchymal 

Transition Generates Cells with Properties of Stem Cells. Cell 133, 704–715. 

Maret, W. (2006). Zinc Coordination Environments in Proteins as Redox Sensors and 

Signal Transducers. Antioxid Redox Signal 8, 1419–1441. 

McDevitt, C.A., Collins, R.F., Conway, M., Modok, S., Storm, J., Kerr, I.D., Ford, R.C., 

and Callaghan, R. (2006). Purification and 3D structural analysis of oligomeric human 

multidrug transporter ABCG2. Structure/Folding and Design 14, 1623–1632. 

Merényi, G., Lind, J., and Eriksen, T.E. (1990). Luminol chemiluminescence: chemistry, 

excitation, emitter. J. Biolumin. Chemilumin. 5, 53–56. 

Meurer, S.K., Lahme, B., Tihaa, L., Weiskirchen, R., and Gressner, A.M. (2005). N-

acetyl-L-cysteine suppresses TGF-beta signaling at distinct molecular steps: the 

biochemical and biological efficacy of a multifunctional, antifibrotic drug. Biochemical 



www.manaraa.com

 251 

Pharmacology 70, 1026–1034. 

Michaeloudes, C., Sukkar, M.B., Khorasani, N.M., Bhavsar, P.K., and Chung, K.F. 

(2011). TGF-β regulates Nox4, MnSOD and catalase expression, and IL-6 release in 

airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 300, L295–L304. 

Mo, W., and Zhang, J.-T. (2012). Human ABCG2: structure, function, and its role in 

multidrug resistance. Int J Biochem Mol Biol 3, 1–27. 

Morita, Y., Ema, H., Yamazaki, S., and Nakauchi, H. (2006). Non-side-population 

hematopoietic stem cells in mouse bone marrow. Blood 108, 2850–2856. 

Moustakas, A., Souchelnytskyi, S., and Heldin, C.H. (2001). Smad regulation in TGF-

beta signal transduction. J Cell Sci 114, 4359–4369. 

Mueller, S. (2000). Sensitive and nonenzymatic measurement of hydrogen peroxide in 

biological systems. Free Radic Biol Med 29, 410–415. 

Mueller, S., and Arnhold, J. (1995). Fast and sensitive chemiluminescence determination 

of H2O2 concentration in stimulated human neutrophils. J. Biolumin. Chemilumin. 10, 

229–237. 

Munger, J.S., Huang, X., Kawakatsu, H., Griffiths, M.J., Dalton, S.L., Wu, J., Pittet, J.F., 

Kaminski, N., Garat, C., Matthay, M.A., et al. (1999). The integrin alpha v beta 6 binds 

and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and 

fibrosis. Cell 96, 319–328. 

Murphy, M.P. (2009). How mitochondria produce reactive oxygen species. Biochem J 

417, 1. 

Murphy, M.P., Holmgren, A., Larsson, N.-G., Halliwell, B., Chang, C.J., Kalyanaraman, 

B., Rhee, S.G., Thornalley, P.J., Partridge, L., Gems, D., et al. (2011). Unraveling the 

biological roles of reactive oxygen species. Cell Metab. 13, 361–366. 

Murphy, S.L., Xu, J., and Kochanek, K.D. (2013). Deaths: Final Data for 2010. National 

Vital Statistics Reports 61, 1–168. 

Nakao, A., Imamura, T., Souchelnytskyi, S., Kawabata, M., Ishisaki, A., Oeda, E., 

Tamaki, K., Hanai, J., Heldin, C.H., Miyazono, K., et al. (1997). TGF-beta receptor-

mediated signalling through Smad2, Smad3 and Smad4. The EMBO Journal 16, 5353–

5362. 

Nan, G., Xing-yi, Z., Rui, J., Guan, W., Jin-dong, L., Cheng-yan, J., and Mei, S. (2011). 

Lentivirus-mediated RNA Interference and Over-expression of CDK2AP1 CDNA 

Regulate CDK2AP1 Expression in Human Lung Cancer A549 Cells. Chemical Research 

in Chinese Universities 27, 445–449. 

Nasilowska-Adamska, B., Solarska, I., Paluszewska, M., Malinowska, I., Jedrzejczak, 



www.manaraa.com

 252 

W.W., and Warzocha, K. (2013). FLT3-ITD and MLL-PTD influence the expression of 

MDR-1, MRP-1, and BCRP mRNA but not LRP mRNA assessed with RQ-PCR method 

in adult acute myeloid leukemia. Ann Hematol 93, 577–593. 

Naylor, C.S., Jaworska, E., Branson, K., Embleton, M.J., and Chopra, R. (2005). Side 

population/ABCG2-positive cells represent a heterogeneous group of haemopoietic cells: 

implications for the use of adult stem cells in transplantation and plasticity protocols. 

Bone Marrow Transplant. 35, 353–360. 

Nisimoto, Y., Jackson, H.M., Ogawa, H., Kawahara, T., and Lambeth, J.D. (2010). 

Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase 

domain. Biochemistry 49, 2433–2442. 

Niu, J., Mo, Q., Wang, H., Li, M., Cui, J., Li, Z., and Li, Z. (2012). Invasion inhibition by 

a MEK inhibitor correlates with the actin-based cytoskeleton in lung cancer A549 cells. 

Biochem Biophys Res Commun 422, 80–84. 

Nordberg, J., and Arnér, E.S. (2001). Reactive oxygen species, antioxidants, and the 

mammalian thioredoxin system. Free Radic Biol Med 31, 1287–1312. 

Oft, M., Heider, K.H., and Beug, H. (1998). TGFbeta signaling is necessary for 

carcinoma cell invasiveness and metastasis. Current Biology 8, 1243–1252. 

Oft, M., Akhurst, R.J., and Balmain, A. (2002). Metastasis is driven by sequential 

elevation of H-ras and Smad2 levels. Nat Cell Biol 487–494. 

Oh, C.J., Kim, J.-Y., Choi, Y.-K., Kim, H.-J., Jeong, J.-Y., Bae, K.-H., Park, K.-G., and 

Lee, I.-K. (2012a). Dimethylfumarate Attenuates Renal Fibrosis via NF-E2-Related 

Factor 2-Mediated Inhibition of Transforming Growth Factor-β/Smad Signaling. PLoS 

ONE 7, e45870. 

Oh, C.J., Kim, J.-Y., Min, A.-K., Park, K.-G., Harris, R.A., Kim, H.-J., and Lee, I.-K. 

(2012b). Free Radical Biology & Medicine. Free Radic Biol Med 52, 671–682. 

Ono, A., Utsugi, M., Masubuchi, K., Ishizuka, T., Kawata, T., Shimizu, Y., Hisada, T., 

Hamuro, J., Mori, M., and Dobashi, K. (2009). Glutathione redox regulates TGF-beta-

induced fibrogenic effects through Smad3 activation. FEBS Letters 583, 357–362. 

Ortiz de Orué Lucana, D. (2012). Redox sensing: novel avenues and paradigms. Antioxid 

Redox Signal 16, 636–638. 

Owada, S., Shimoda, Y., Tsuchihara, K., and Esumi, H. (2013). Critical Role of H2O2 

Generated by NOX4 during Cellular Response under Glucose Deprivation. PLoS ONE 8, 

e56628. 

Parkos, C.A., Allen, R.A., Cochrane, C.G., and Jesaitis, A.J. (1987). Purified cytochrome 

b from human granulocyte plasma membrane is comprised of two polypeptides with 

relative molecular weights of 91,000 and 22,000. J Clin Invest 80, 732–742. 



www.manaraa.com

 253 

Peltoniemi, M., Kaarteenaho-Wiik, R., Säily, M., Sormunen, R., Pääkkö, P., Holmgren, 

A., Soini, Y., and Kinnula, V.L. (2004). Expression of glutaredoxin is highly cell specific 

in human lung and is decreased by transforming growth factor-beta in vitro and in 

interstitial lung diseases in vivo. Hum Pathol 35, 1000–1007. 

Perkins, P. (2009). 13352 - smoothhist2D (Matlab File Exchange). 

Petersen, M., Pardali, E., van der Horst, G., Cheung, H., van den Hoogen, C., van der 

Pluijm, G., and Dijke, ten, P. (2010). Smad2 and Smad3 have opposing roles in breast 

cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene 29, 

1351–1361. 

Petriz, J. (2013). Flow cytometry of the side population (SP). Curr Protoc Cytom Chapter 

9, Unit9.23. 

Pickup, M., Novitskiy, S., and Moses, H.L. (2013). The roles of TGFβ in the tumour 

microenvironment. Nat Rev Cancer 13, 788–799. 

Poncelet, A.C., Schnaper, H.W., Tan, R., Liu, Y., and Runyan, C.E. (2007). Cell 

Phenotype-specific Down-regulation of Smad3 Involves Decreased Gene Activation as 

Well as Protein Degradation. J Biol Chem 282, 15534–15540. 

Poole, L.B., Hall, A., and Nelson, K.J. (2011). Overview of peroxiredoxins in oxidant 

defense and redox regulation. Curr Protoc Toxicol Chapter 7, Unit7.9. 

Rabindran, S.K., He, H., Singh, M., Brown, E., Collins, K.I., Annable, T., and 

Greenberger, L.M. (1998). Reversal of a novel multidrug resistance mechanism in human 

colon carcinoma cells by fumitremorgin C. Cancer Res 58, 5850–5858. 

Rabindran, S.K., Ross, D.D., Doyle, L.A., Yang, W., and Greenberger, L.M. (2000). 

Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer 

resistance protein. Cancer Res 60, 47–50. 

Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A. (1991). Peroxynitrite oxidation 

of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266, 

4244–4250. 

Ramos, C., Becerril, C., Montaño, M., García-De-Alba, C., Ramírez, R., Checa, M., 

Pardo, A., and Selman, M. (2010). FGF-1 reverts epithelial-mesenchymal transition 

induced by TGF-{beta}1 through MAPK/ERK kinase pathway. AJP: Lung Cellular and 

Molecular Physiology 299, L222–L231. 

Ranganathan, P., Agrawal, A., Bhushan, R., Chavalmane, A., Kalathur, R., Takahashi, T., 

and Kondaiah, P. (2007). Expression profiling of genes regulated by TGF-beta: 

Differential regulation in normal and tumour cells. BMC Genomics 8, 98. 

Rhyu, D.Y., Yang, Y., Ha, H., Lee, G.T., Song, J.S., Uh, S.-T., and Lee, H.B. (2005). 

Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase 



www.manaraa.com

 254 

activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J. Am. 

Soc. Nephrol. 16, 667–675. 

Ryoo, I.-G., Ha, H., and Kwak, M.-K. (2014). Inhibitory Role of the KEAP1-NRF2 

Pathway in TGFβ1-Stimulated Renal Epithelial Transition to Fibroblastic Cells: A 

Modulatory Effect on SMAD Signaling. PLoS ONE 9, e93265. 

Sabisz, M., and Skladanowski, A. (2009). Cancer stem cells and escape from drug-

induced premature senescence in human lung tumor cells: implications for drug 

resistance and in vitro drug screening models. Cell Cycle 8, 3208–3217. 

Salerno, M., and Garnier-Suillerot, A. (2001). Kinetics of glutathione and daunorubicin 

efflux from multidrug resistance protein overexpressing small-cell lung cancer cells. Eur 

J Pharmacol 421, 1–9. 

Salerno, M., Loechariyakul, P., Saengkhae, C., and Garnier-Suillerot, A. (2004). Relation 

between the ability of some compounds to modulate the MRP1-mediated efflux of 

glutathione and to inhibit the MRPl-mediated efflux of daunorubicin. Biochemical 

Pharmacology 68, 2159–2165. 

Samarakoon, R., and Higgins, P.J. (2008). Integration of non-SMAD and SMAD 

signaling in TGF-beta1-induced plasminogen activator inhibitor type-1 gene expression 

in vascular smooth muscle cells. Thromb Haemost 100, 976–983. 

Samarakoon, R., Chitnis, S.S., Higgins, S.P., Higgins, C.E., Krepinsky, J.C., and Higgins, 

P.J. (2011). Redox-Induced Src Kinase and Caveolin-1 Signaling in TGF-β1-Initiated 

SMAD2/3 Activation and PAI-1 Expression. PLoS ONE 6, e22896. 

Sancho, P., and Fabregat, I. (2011). The NADPH oxidase inhibitor VAS2870 impairs cell 

growth and enhances TGF-Î²-induced apoptosis of liver tumor cells. Biochemical 

Pharmacology 81, 917–924. 

Santibanez, J.F., Quintanilla, M., and Bernabeu, C. (2011). TGF-β/TGF-β receptor 

system and its role in physiological and pathological conditions. Clin Sci 121, 233–251. 

Sartor, M.A., Mahavisno, V., Keshamouni, V.G., Cavalcoli, J., Wright, Z., Karnovsky, 

A., Kuick, R., Jagadish, H.V., Mirel, B., Weymouth, T., et al. (2010). ConceptGen: a 

gene set enrichment and gene set relation mapping tool. Bioinformatics 26, 456–463. 

Savagner, P. (2010). The epithelial-mesenchymal transition (EMT) phenomenon. Annals 

of Oncology 21 Suppl 7, vii89–vii92. 

Schafer, F.Q., and Buettner, G.R. (2001). Redox environment of the cell as viewed 

through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol 

Med 30, 1191–1212. 

Scharenberg, C.W. (2002). The ABCG2 transporter is an efficient Hoechst 33342 efflux 

pump and is preferentially expressed by immature human hematopoietic progenitors. 



www.manaraa.com

 255 

Blood 99, 507–512. 

Schmierer, B., Tournier, A., Bates, P., and Hill, C.S. (2008). Mathematical modeling 

identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting system. 

Proceedings of the National Academy of Sciences 105, 6608. 

Schmierer, B., and Hill, C.S. (2005). Kinetic analysis of Smad nucleocytoplasmic 

shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear 

accumulation of Smads. Mol Cell Biol 25, 9845–9858. 

Seo, D.-C., Sung, J.-M., Cho, H.-J., Yi, H., Seo, K.-H., Choi, I.-S., Kim, D.-K., Kim, J.-

S., El-Aty AM, A., and Shin, H.-C. (2007). Gene expression profiling of cancer stem cell 

in human lung adenocarcinoma A549 cells. Mol Cancer 6, 75. 

Serrander, L., Cartier, L., Bedard, K., Banfi, B., Lardy, B., Plastre, O., Sienkiewicz, A., 

Fórró, L., Schlegel, W., and Krause, K.-H. (2007). NOX4 activity is determined by 

mRNA levels and reveals a unique pattern of ROS generation. Biochem J 406, 105–114. 

Shan, B., Yao, T.P., Nguyen, H.T., Zhuo, Y., Levy, D.R., Klingsberg, R.C., Tao, H., 

Palmer, M.L., Holder, K.N., and Lasky, J.A. (2008). Requirement of HDAC6 for 

Transforming Growth Factor- 1-induced Epithelial-Mesenchymal Transition. J Biol 

Chem 283, 21065–21073. 

Sharom, F.J. (2008). ABC multidrug transporters: structure, function and role in 

chemoresistance. Pharmacogenomics 9, 105–127. 

SHEN, H., Paul, S., Breuninger, L.M., Ciaccio, P.J., Laing, N.M., Helt, M., Tew, K.D., 

and Kruh, G.D. (1996). Cellular and in vitro transport of glutathione conjugates by MRP. 

Biochemistry 35, 5719–5725. 

Shen, S., Callaghan, D., Juzwik, C., Xiong, H., Huang, P., and Zhang, W. (2010). 

ABCG2 reduces ROS-mediated toxicity and inflammation: a potential role in 

Alzheimer’s disease. J. Neurochem. 114, 1590–1604. 

Shi, M., Zhu, J., Wang, R., Chen, X., Mi, L., Walz, T., and Springer, T.A. (2011). Latent 

TGF-β structure and activation. Nature 474, 343–349. 

Shi, Y., and Massague, J. (2003). Mechanisms of TGF-beta signaling from cell 

membrane to the nucleus. Cell 113, 685–700. 

Shipitsin, M., Campbell, L.L., Argani, P., Weremowicz, S., Bloushtain-Qimron, N., Yao, 

J., Nikolskaya, T., Serebryiskaya, T., Beroukhim, R., Hu, M., et al. (2007). Molecular 

Definition of Breast Tumor Heterogeneity. Cancer Cell 11, 259–273. 

Singh, A., Wu, H., Zhang, P., Happel, C., Ma, J., and Biswal, S. (2010). Expression of 

ABCG2 (BCRP) Is Regulated by Nrf2 in Cancer Cells That Confers Side Population and 

Chemoresistance Phenotype. Mol. Cancer Ther. 9, 2365–2376. 



www.manaraa.com

 256 

Singh, A., Misra, V., Thimmulappa, R.K., Lee, H., Ames, S., Hoque, M.O., Herman, 

J.G., Baylin, S.B., Sidransky, D., Gabrielson, E., et al. (2006). Dysfunctional KEAP1–

NRF2 Interaction in Non-Small-Cell Lung Cancer. Plos Med 3, e420. 

Smith, P.J., Wiltshire, M., Chappell, S.C., Cosentino, L., Burns, P.A., Pors, K., and 

Errington, R.J. (2012). Kinetic analysis of intracellular Hoechst 33342-DNA interactions 

by flow cytometry: Misinterpretation of side population status? Cytometry 83A, 161–169. 

Sobotta, M.C., Barata, A.G., Schmidt, U., Mueller, S., Millonig, G., and Dick, T.P. 

(2013). Exposing cells to H2O2: a quantitative comparison between continuous low-dose 

and one-time high-dose treatments. Free Radic Biol Med 60, 325–335. 

Song, X., Liu, X., Chi, W., Liu, Y., Wei, L., Wang, X., and Yu, J. (2006). Hypoxia-

induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited 

by silencing of HIF-1alpha gene. Cancer Chemother Pharmacol 58, 776–784. 

Souchelnytskyi, S. (1997). Phosphorylation of Ser465 and Ser467 in the C Terminus of 

Smad2 Mediates Interaction with Smad4 and Is Required for Transforming Growth 

Factor-beta Signaling. Journal of Biological Chemistry 272, 28107–28115. 

Stacy, A.E., Jansson, P.J., and Richardson, D.R. (2013). Molecular pharmacology of 

ABCG2 and its role in chemoresistance. Mol Pharmacol 84, 655–669. 

Stockwell, B.R., Haggarty, S.J., and Schreiber, S.L. (1999). High-throughput screening of 

small molecules in miniaturized mammalian cell-based assays involving post-

translational modifications. Chemistry & Biology 6, 71–83. 

Stroschein, S.L., Wang, W., and Luo, K. (1999). Cooperative Binding of Smad Proteins 

to Two Adjacent DNA Elements in the Plasminogen Activator Inhibitor-1 Promoter 

Mediates Transforming Growth Factor  -induced Smad-dependent Transcriptional 

Activation. Journal of Biological Chemistry 274, 9431–9441. 

Sung, J.-M., Cho, H.-J., Yi, H., Lee, C.-H., Kim, H.-S., Kim, D.-K., Abd El-Aty, A.M., 

Kim, J.-S., Landowski, C.P., Hediger, M.A., et al. (2008). Characterization of a stem cell 

population in lung cancer A549 cells. Biochem Biophys Res Commun 371, 163–167. 

Takac, I., Schröder, K., Zhang, L., Lardy, B., Anilkumar, N., Lambeth, J.D., Shah, A.M., 

Morel, F., and Brandes, R.P. (2011). The E-loop is involved in hydrogen peroxide 

formation by the NADPH oxidase Nox4. J Biol Chem 286, 13304–13313. 

Talmadge, J.E., and Fidler, I.J. (2010). AACR Centennial Series: The Biology of Cancer 

Metastasis: Historical Perspective. Cancer Res 70, 5649–5669. 

Thatcher, J.D. (2010). The TGF-beta signal transduction pathway. Science Signaling 3, 

tr4. 

Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev 

Cancer 2, 442–454. 



www.manaraa.com

 257 

Thiery, J.P., and Sleeman, J.P. (2006). Complex networks orchestrate epithelial-

mesenchymal transitions. Nat Rev Mol Cell Biol 7, 131–142. 

Thiery, J.P., Acloque, H., Huang, R.Y.J., and Nieto, M.A. (2009). Epithelial-

mesenchymal transitions in development and disease. Cell 139, 871–890. 

Tirino, V., Camerlingo, R., Bifulco, K., Irollo, E., Montella, R., Paino, F., Sessa, G., 

Carriero, M.V., Normanno, N., Rocco, G., et al. (2013). TGF-β1 exposure induces 

epithelial to mesenchymal transition both in CSCs and non-CSCs of the A549 cell line, 

leading to an increase of migration ability in the CD133+ A549 cell fraction. Cell Death 

Dis 4, e620. 

Tobar, N., Guerrero, J., Smith, P.C., and Martínez, J. (2010). NOX4-dependent ROS 

production by stromal mammary cells modulates epithelial MCF-7 cell migration. British 

Journal of Cancer 103, 1040–1047. 

Tojo, M., Hamashima, Y., Hanyu, A., Kajimoto, T., Saitoh, M., Miyazono, K., Node, M., 

and Imamura, T. (2005). The ALK-5 inhibitor A-83-01 inhibits Smad signaling and 

epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer Sci. 96, 

791–800. 

Tomita, K., van Bokhoven, A., van Leenders, G.J., Ruijter, E.T., Jansen, C.F., 

Bussemakers, M.J., and Schalken, J.A. (2000). Cadherin switching in human prostate 

cancer progression. Cancer Res 60, 3650–3654. 

Trujillo, M., and Radi, R. (2002). Peroxynitrite reaction with the reduced and the 

oxidized forms of lipoic acid: new insights into the reaction of peroxynitrite with thiols. 

Arch Biochem Biophys 397, 91–98. 

Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C.-H., and Moustakas, A. (2005). TGF-

beta and the Smad signaling pathway support transcriptomic reprogramming during 

epithelial-mesenchymal cell transition. Mol Biol Cell 16, 1987–2002. 

Valenzuela, D.M., and Groffen, J. (1986). Four human carcinoma cell lines with novel 

mutations in position 12 of c-K-ras oncogene. Nucleic Acids Res. 14, 843–852. 

van den Heuvel-Eibrink, M.M., van der Holt, B., Burnett, A.K., Knauf, W.U., Fey, M.F., 

Verhoef, G.E.G., Vellenga, E., Ossenkoppele, G.J., Löwenberg, B., and Sonneveld, P. 

(2007). CD34-related coexpression of MDR1 and BCRP indicates a clinically resistant 

phenotype in patients with acute myeloid leukemia (AML) of older age. Ann Hematol 86, 

329–337. 

van der Werf, M.J. (2006). Multivariate analysis of microarray data by principal 

component discriminant analysis: prioritizing relevant transcripts linked to the 

degradation of different carbohydrates in Pseudomonas putida S12. Microbiology 152, 

257–272. 

vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the 



www.manaraa.com

 258 

Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–

1033. 

Vayalil, P.K., Iles, K.E., Choi, J., Yi, A.-K., Postlethwait, E.M., and Liu, R.-M. (2007). 

Glutathione suppresses TGF-beta-induced PAI-1 expression by inhibiting p38 and JNK 

MAPK and the binding of AP-1, SP-1, and Smad to the PAI-1 promoter. AJP: Lung 

Cellular and Molecular Physiology 293, L1281–L1292. 

Videira, M., Reis, R.L., and Brito, M.A. (2014). Biochimica et Biophysica Acta. BBA - 

Reviews on Cancer 1846, 312–325. 

Vincent, T., Neve, E.P.A., Johnson, J.R., Kukalev, A., Rojo, F., Albanell, J., Pietras, K., 

Virtanen, I., Philipson, L., Leopold, P.L., et al. (2009). A SNAIL1-SMAD3/4 

transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal 

transition. Nat Cell Biol 11, 943–950. 

Vogt, J., Traynor, R., and Sapkota, G.P. (2011). The specificities of small molecule 

inhibitors of the TGFß and BMP pathways. Cell Signal 23, 1831–1842. 

Vyas-Read, S., Wang, W., Kato, S., Colvocoresses-Dodds, J., Fifadara, N.H., Gauthier, 

T.W., Helms, M.N., Carlton, D.P., and Brown, L.A.S. (2014). Hyperoxia induces 

alveolar epithelial-to-mesenchymal cell transition. AJP: Lung Cellular and Molecular 

Physiology 306, L326–L340. 

Waddington, C.H. (1942). Canalization of development and the inheritance of acquired 

characters. Nature 150, 563–565. 

Wakefield, L.M., Smith, D.M., Flanders, K.C., and Sporn, M.B. (1988). Latent 

transforming growth factor-beta from human platelets. A high molecular weight complex 

containing precursor sequences. J Biol Chem 263, 7646–7654. 

Wang, H., Wu, J., Zhang, Y., Xue, X., Tang, D., Yuan, Z., Chen, M., Wei, J., Zhang, J., 

and Miao, Y. (2012). Transforming growth factor β-induced epithelial-mesenchymal 

transition increases cancer stem-like cells in the PANC-1 cell line. Oncol Lett 3, 229–

233. 

Wang, X., Campos, C.R., Peart, J.C., Smith, L.K., Boni, J.L., Cannon, R.E., and Miller, 

D.S. (2014). Nrf2 upregulates ATP binding cassette transporter expression and activity at 

the blood-brain and blood-spinal cord barriers. J. Neurosci. 34, 8585–8593. 

Wardman, P. (2007). Fluorescent and luminescent probes for measurement of oxidative 

and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic 

Biol Med 43, 995–1022. 

Watanabe, N., Dickinson, D.A., Krzywanski, D.M., Iles, K.E., Zhang, H., Venglarik, 

C.J., and Forman, H.J. (2002). A549 subclones demonstrate heterogeneity in 

toxicological sensitivity and antioxidant profile. Am J Physiol Lung Cell Mol Physiol 

283, L726–L736. 



www.manaraa.com

 259 

Wheelock, Å.M., and Wheelock, C.E. (2013). Trials and tribulations of 'omics data 

analysis: assessing quality of SIMCA-based multivariate models using examples from 

pulmonary medicine. Mol Biosyst 9, 2589–2596. 

Wheelock, M.J., Shintani, Y., Maeda, M., Fukumoto, Y., and Johnson, K.R. (2008). 

Cadherin switching. J Cell Sci 121, 727–735. 

Winterbourn, C.C. (2008). Reconciling the chemistry and biology of reactive oxygen 

species. Nature Chemical Biology 4, 278–286. 

World Health Organization (2012). World Health Statistics 2012 (WHO Press). 

Wu, C., and Alman, B.A. (2008). Side population cells in human cancers. Cancer Lett 

268, 1–9. 

Xie, L., Law, B.K., Chytil, A.M., Brown, K.A., Aakre, M.E., and Moses, H.L. (2004). 

Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. 

Neoplasia 6, 603–610. 

Xu, J., Liu, Y., Yang, Y., Bates, S., and Zhang, J.-T. (2004). Characterization of 

oligomeric human half-ABC transporter ATP-binding cassette G2. J Biol Chem 279, 

19781–19789. 

Xu, J., Peng, H., Chen, Q., Liu, Y., Dong, Z., and Zhang, J.-T. (2007). Oligomerization 

domain of the multidrug resistance-associated transporter ABCG2 and its dominant 

inhibitory activity. Cancer Res 67, 4373–4381. 

Yanagisawa, K., Osada, H., Masuda, A., Kondo, M., Saito, T., Yatabe, Y., Takagi, K., 

and Takahashi, T. (1998). Induction of apoptosis by Smad3 and down-regulation of 

Smad3 expression in response to TGF-beta in human normal lung epithelial cells. 

Oncogene 17, 1743–1747. 

Yasuda, K., Torigoe, T., Morita, R., Kuroda, T., Takahashi, A., Matsuzaki, J., Kochin, 

V., Asanuma, H., Hasegawa, T., Saito, T., et al. (2013). Ovarian Cancer Stem Cells Are 

Enriched in Side Population and Aldehyde Dehydrogenase Bright Overlapping 

Population. PLoS ONE 8, e68187. 

Yeh, C.-T., Su, C.-L., Huang, C.-Y.F., Lin, J.K.-Y., Lee, W.-H., Chang, P.M.H., Kuo, Y.-

L., Liu, Y.-W., Wang, L.-S., Wu, C.-H., et al. (2013). A Preclinical Evaluation of 

Antimycin A as a Potential Antilung Cancer Stem Cell Agent. Evidence-Based 

Complementary and Alternative Medicine 2013, 1–13. 

Yin, L., Castagnino, P., and Assoian, R.K. (2008). ABCG2 expression and side 

population abundance regulated by a transforming growth factor beta-directed epithelial-

mesenchymal transition. Cancer Res 68, 800–807. 

Yu, M., Bardia, A., Wittner, B.S., Stott, S.L., Smas, M.E., Ting, D.T., Isakoff, S.J., 

Ciciliano, J.C., Wells, M.N., Shah, A.M., et al. (2013). Circulating Breast Tumor Cells 



www.manaraa.com

 260 

Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition. Science 339, 

580–584. 

Zavadil, J., and Böttinger, E.P. (2005). TGF-beta and epithelial-to-mesenchymal 

transitions. Oncogene 24, 5764–5774. 

Zhang, K.H., Tian, H.Y., Gao, X., Lei, W.W., Hu, Y., Wang, D.M., Pan, X.C., Yu, M.L., 

Xu, G.J., Zhao, F.K., et al. (2009). Ferritin Heavy Chain-Mediated Iron Homeostasis and 

Subsequent Increased Reactive Oxygen Species Production Are Essential for Epithelial-

Mesenchymal Transition. Cancer Res 69, 5340–5348. 

Zhang, L., Lei, W., Wang, X., Tang, Y., and Song, J. (2010). Glucocorticoid induces 

mesenchymal-to-epithelial transition and inhibits TGF-β1-induced epithelial-to-

mesenchymal transition and cell migration. FEBS Letters 584, 4646–4654. 

Zhang, Y.E. (2009). Non-Smad pathways in TGF-beta signaling. Cell Res 19, 128–139. 

Zhou, S., Schuetz, J.D., Bunting, K.D., Colapietro, A.M., Sampath, J., Morris, J.J., 

Lagutina, I., Grosveld, G.C., Osawa, M., Nakauchi, H., et al. (2001). The ABC 

transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular 

determinant of the side-population phenotype. Nat Med 7, 1028–1034. 

Zhou, Y.-C., Liu, J.-Y., Li, J., Zhang, J., Xu, Y.-Q., Zhang, H.-W., Qiu, L.-B., Ding, G.-

R., Su, X.-M., Mei-Shi, et al. (2011). Ionizing radiation promotes migration and invasion 

of cancer cells through transforming growth factor-beta-mediated epithelial-

mesenchymal transition. Int. J. Radiat. Oncol. Biol. Phys. 81, 1530–1537. 

Zi, Z., Feng, Z., Chapnick, D.A., Dahl, M., Deng, D., Klipp, E., Moustakas, A., and Liu, 

X. (2011). Quantitative analysis of transient and sustained transforming growth factor-β 

signaling dynamics. Molecular Systems Biology 7, 492. 

 


